
Enhancing Block Composition: The Role of
Category Highlighting in Block-Based

Environments
Mauricio Verano Merino

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

m.verano.merino@vu.nl

Niels Kok
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

nielskokrl@gmail.com

Abstract—Block-based programming environments have be-
come widely recognized as a user-friendly approach to program-
ming, especially for beginners and non-technical users. They offer
a programming experience based on the what-you-see-is-what-
you-get (WYSIWYG) paradigm. These environments employ
visual jigsaw-like blocks that users can snap together to form
programs, allowing them to focus on logical concepts without
the burden of the language’s syntax. However, the usability of
these environments often varies, affecting the quality of the
user experience. This paper presents Category Highlighting, a
technique designed to enhance block discoverability, facilitate
intuitive interactions, and improve overall navigation within en-
vironments built on the Google Blockly library. We demonstrate
its usefulness in different case studies.

Index Terms—Usability, Syntax, Grammars, Kogi, Block-based
Environments, Blockly, Visual Programming

I. INTRODUCTION

Over the past few years, block-based programming lan-
guages have gained widespread popularity, emerging as an
ideal entry point for beginners eager to explore the world of
programming [1]–[3]. These languages utilize visual blocks
that can be easily snapped together to create programs, pro-
viding an intuitive and engaging learning experience.

Block-based environments are visual programming plat-
forms that represent language constructs using interlocking,
jigsaw-like blocks. Each construct is depicted with distinct
block shapes and edge features that provide visual hints about
how the blocks can be connected. The advantage of this
type of interface is that it offers a ”what-you-see-is-what-you-
get” (WYSIWYG) programming experience while eliminating
the possibility of syntax errors [4]–[7]. A block-based editor
functions as a tool for directly manipulating the abstract syntax
of a language, making block-based programming a form of
projectional editing.

Among the tools that facilitate the development of block-
based environments are Kogi [8] and its enhanced version,
S/Kogi1 [9], [10]. Kogi simplifies the creation of visual
block-based programming environments by generating them
directly from language specifications. It leverages Google
Blockly [11], a widely used library for building block-based
programming interfaces, to provide an intuitive and adaptable

1S/Kogi builds upon Kogi by incorporating a set of heuristics designed to
improve the usability of the generated environments.

development framework. Although Kogi-like tools show great
promise in generating user-friendly block-based environments,
the introduction of new enhancements can further improve
their usability. To address this, this paper focuses on the
following research question. How can block composition be
made more explicit in block-based environments?

The remainder of this paper is structured as follows: We first
provide background information on block-based environments
(Section II) and introduce Kogi (Section III). We then explore
the challenge of an unclear block composition (Section IV)
and propose a solution, Category Highlighting (Section V).
To examine its impact, we present findings from four case
studies (Section VI). Finally, we discuss the implications of
introducing Category Highlighting (Section VII) and conclude
with future research directions (Section VIII).

II. BLOCK-BASED ENVIRONMENTS

A block-based environment is a visual, interactive drag-and-
drop programming interface where language constructs are
depicted as jigsaw-like puzzle pieces, referred to as blocks.
These blocks are designed with distinct visual features, such
as shape, color, and connection patterns. These features assist
users in grasping how various blocks (language constructs)
can be combined to form valid programs [12]. For example,
Figure 1 shows a block-based representation of a while
loop. The red circle in Figure 1 indicates a user input. Inputs
are blocks that users can drag into other blocks to form
a syntactically valid program, also known as Fields. Fields
represent data inputs, with common types including numbers,
strings, lists, and variables.

In addition to Field inputs, there are connections that guide
users through visual cues, such as male and female jigsaw
connections, showing that blocks can be combined. The green
circle (Figure 1) illustrates a male jigsaw connection, indicat-
ing a required Statement input. These inputs allow blocks to
be vertically stacked, building a coherent program.

Toolbox

The Google Blockly toolbox is a key component, providing
a palette of blocks for users to build programs. Organized
into color-coded categories like loops, events, and variables,
it enables users to easily locate and drag blocks into the



Fig. 1: A while block created in Google Blockly [12].

workspace to construct sequences of instructions. This orga-
nization enhances user experience by promoting a systematic
approach to programming and helping users quickly find the
right blocks for each task.

Fig. 2: A typical Block-based environment using the State
Machine language (Listing 1).

The red area in Figure 2 is the environment’s toolbox. In
this example, the category ‘Image’ has been selected and the
corresponding blocks can be viewed by the user.

Canvas

The Blockly canvas (blue highlighted area in Figure 2) is the
core area in Block-Based environments, it is where users build
programs with visual blocks. It allows blocks to be dragged,
connected, and arranged in sequences. This intuitive interface
helps beginners to understand programming concepts.

III. KOGI

Kogi is a language-parametric block-based generator that
derives block-based environments from language specifica-
tions [8], [13]. It is developed using Rascal [14] for language
definition and Google Blockly for visualization of the result-
ing environments. Kogi traverses the context-free grammar
definition of the languages to extract essential syntactical
information to derive blocks that align with the language’s
specification.

Listing 1 presents an example of a grammar for a state ma-
chine language. The grammar contains four labeled production
rules (e.g., state, and transition) that define the language’s syn-
tax. Within these productions, a combination of nonterminal
(e.g., State, and Trans) and terminal symbols (e.g., "on"
and "to") play a crucial role, as we will use them to improve
Kogi’s generated environments. Each nonterminal symbol can
be labeled (e.g., id in the nonterminal symbol Id). These
labels are essential in understanding Kogi’s block derivation
process and will help us explore the limitations and potential
enhancement to the Blockly library.

start syntax Machine =
machine: "machine" Id id State* states;

syntax State=
state: "state" Id id "{" Trans* transitions "}";

syntax Trans =
transition: "on" Id "to" Id to;

lexical Id = id: [a-zA-Z]+;

Listing 1: State machine grammar using Rascal.

Fig. 3: The path from a list of Productions to a list of Blocks.

From Production Rules to Blocks: To gain a comprehen-
sive understanding of the inner workings of Kogi, it is crucial
to delve into the step-by-step process it employs to derive a
Blockly environment from a context-free grammar. Now, let’s
examine how Kogi transforms production rules into blocks.

Figure 3 presents a simplified overview of the key steps in-
volved in this process. It begins on the left with a context-free
grammar. Leveraging the capabilities of the Rascal metapro-
gramming language [15], we extract a list of production rules
from the grammar. This list is then provided as input to the
grammar2blocks module, which transforms the production
rules into blocks. Notably, the transformation process is not
confined to the grammar2blocks module alone; instead, it
depends on auxiliary modules, such as symbols2message,
to facilitate the conversion of production rules into blocks. This
module, the symbols2message module, takes the terminal
and nonterminal symbols of each production rule as input and
converts these symbols into messages, which is the mechanism
offered by Blockly to enable developers to define custom block
configurations. Once grammar2blocks generates a list of
blocks, the block generation process remains incomplete. The
final step involves creating the Toolbox component, which
organizes the generated blocks into categories.

The Toolbox generation process operates as follows: each
nonterminal symbol N is mapped to a corresponding cate-
gory. For every nonterminal symbol, a category named N is
created. Subsequently, all production rules (P ) associated with
each nonterminal symbol N are assigned to their respective
category N , and the generated blocks are named P . The type
name of each block, which serves as an identifier within the
block-based environment (invisible in the user interface), is
set to N/P . The remainder of the block’s data structure is
then populated with precise details based on its terminal and
nonterminal symbols. Finally, the blocks and the Toolbox are
compiled into JavaScript and HTML for use in the environ-
ment.

IV. CHALLENGES IN BLOCK COMPOSITION AND USER
GUIDANCE IN BLOCK-BASED ENVIRONMENTS

With a clear understanding of context-free grammars, the
Blockly environment, and Kogi, we now address an ongoing



(a) Limitation. (b) Solution.

Fig. 4: Example of the category highlighting limitation (left)
and proposed solution (right).

issue in S/Kogi (Kogi’s improved version) [9]. A noteworthy
challenge that emerged when working with Kogi-generated
environments—and, more broadly, with Blockly-based envi-
ronments—is the lack of clear instructions for users on how
to connect blocks effectively. The absence of labeled inputs
on the blocks leaves users uncertain about the appropriate
category and specific block to use when connecting the inputs
of a block. For example, for the State Machine language
(Listing 1), Kogi will generate four categories (one for each
labeled production) as shown in Figure 2. However, there is
no guidance indicating which category should be used for the
open inputs of a block once it is placed in the workspace.

Although this issue is relatively manageable in a small
language like the State Machine language, it becomes signifi-
cantly more pronounced in realistic languages with a larger
number of constructs (e.g., MiniJava). As a result, users
face limited visibility and reduced role-expressiveness, often
relying on guesswork to identify the correct block type. This is
particularly challenging for beginners and novice users of Kogi
and block-based environments in general, as it demands an
understanding of the underlying grammar structure to navigate
the block-based environment effectively. Such a requirement
contradicts the purpose of these environments, which aim to
simplify programming for end-users.

The lack of visual cues or clear communication regarding
which blocks can connect to others could hinder users’ expe-
rience when programming. For instance, in the state machine
example (Listing 1), when a user creates an empty state
machine on the canvas (see Figure 4a), no visual indicators
specify the valid blocks (language constructs) that can connect
to the current program. This gap in guidance leaves users to
deduce compatibility on their own. Notably, all the necessary
information to assist users in program development already
exists within the block-based environment or the underlying
grammar, yet it remains inaccessible or underutilized in prac-
tice.

V. CATEGORY HIGHLIGHTING TO ENHANCE BLOCK
COMPOSITION IN BLOCKLY

To address the issue of unclear block composition (Sec-
tion IV), we developed Category Highlighting as a solution
for block-based environments. Implemented as an extension
to Kogi, this feature enhances user guidance by visually
highlighting the relevant categories for all inputs of a selected
block. This highlighting feature provides a clear visual cue,

helping users identify compatible blocks to connect. It does
so by coloring the background of the categories with a light
green color, enhancing the overall visibility when trying to
compose blocks in the workspace. If an input has already been
occupied by a block of the same category, the background
turns orange, further improving clarity and streamlining the
block composition process.

To implement Category Highlighting, we leverage the event
listener feature provided by Blockly. Event listeners are func-
tions that continuously monitor user actions within the Blockly
workspace. Each action is associated with a unique event
name. For instance, clicking on a block triggers an event.
By utilizing the event listener, we can extract the ID of the
selected block, enabling us to leverage the built-in functions of
the Blockly library and apply them to this block. One of these
functions allows us to extract all information related to the
inputs of a block, including which type of blocks are allowed
and whether the input is already populated. Remember that the
type of block tells us in which category the block is stored.
Now, we can simply cross-reference the allowed types with the
categories available in the toolbox, and if the type matches
with a category, we store the category to be colored later.
If the input is already occupied, we give it an orange color;
otherwise, we color it green. This is how we indicate to a user
which categories are associated with the inputs of a block.

An example is shown in Figure 4b, where a block from
the Machine category has been dragged into the workspace
and selected. With Category Highlighting enabled, the relevant
categories associated with the block’s inputs are visually
highlighted. From these highlights, we can see that the selected
block requires inputs from the State category, providing
clear guidance for block composition.

This feature reduces the cognitive burden on users by
alleviating the need to memorize the underlying grammar
structures of the languages. With Category Highlighting, users
receive instant visual feedback, reducing reliance on explicit
grammar knowledge and streamlining the block selection
process. By providing clear indications of block compatibility,
this feature facilitates informed decision-making, supports
systematic exploration within the Blockly environment, and
enhances overall usability. Ultimately, by minimizing cognitive
load, we believe that, Category Highlighting contributes to
a more efficient and user-friendly block-based programming
experience.

VI. CASE STUDIES

Using Kogi, we generated block-based environments for
four distinct languages: the state machine language (discussed
earlier), along with CCL, Pico, and QL — all implemented
using Rascal. Below, we provide an overview of the latter three
emphasizing the impact of supporting Category Highlighting
across different languages. This enhancement aims to improve
the user experience by reducing cognitive load and streamlin-
ing the block-building process within Blockly’s canvas.



A. CCL

The Cloud Configuration Language (CCL) is a special-
ized language modeled after the structure used in Amazon
Web Services CloudFormation [16] for provisioning cloud re-
sources. Unlike traditional domain-specific languages (DSLs)
or general-purpose languages (GPLs), CCL features a largely
fixed structure, where the primary variations occur in the
values provided.

Figure 5 illustrates an example program written in the CCL
language, where a user aims to allocate cloud resources for an
application. To achieve this, the user employs a Resources
block and adds an instance. In the figure, some parameters for
the instance have already been defined; the corresponding
categories are highlighted in orange. This differentiation is
significant because it allows users to concentrate on the
categories highlighted in green, which provide guidance and
assistance for completing the program.

Building on this, Figure 6 demonstrates a different scenario
where the user adds a new instance without any predefined
parameters. In this case, all parameters are initially empty,
and the valid categories are highlighted in green (e.g., CPU,
Image, IPV6), guiding the user through the parameter selection
and configuration process.

Fig. 5: Example CCL program to define a cloud instance with
some prefilled parameters.

Fig. 6: Example CCL program to define a cloud resource
without prefilled parameters.

B. Pico

Pico is a simplified programming language, similar to the
While language, commonly used in textbooks on programming
language semantics. An implementation of Pico is included in
the Rascal standard library [17]. To develop a block-based
interface for Pico, we leveraged its existing grammar from
the Rascal library as input to Kogi. The resulting block-based

environment is illustrated in Figures 7 and 8, which already
supports Category Higlighting.

Fig. 7: Example Pico program to define a simple while loop.

Fig. 8: Example Pico program to define a simple while loop.

C. QL

QL is a domain-specific language (DSL) designed for
creating interactive questionnaires and has been used as a
benchmark for evaluating language workbenches [15]. Its
suitability for block-based environments stems from its focus
on non-programming tasks, making it particularly accessible
to domain experts who may have little to no programming
experience. Block-based interfaces, with their intuitive features
such as natural language labels, distinct colors and shapes, and
drag-and-drop interactions, can provide a more user-friendly
experience for this audience [50, 52].

Since Rascal already included an implementation of QL, we
utilized its existing syntax to generate a block-based version.
Specifically, QL’s concrete syntax in Rascal was used as input
for Kogi to produce the block-based environment, including
the category highlighting feature. Figure 9 illustrates an ex-
ample of a tax questionnaire created within this environment,
where a domain expert could design a simplified tax form with
a basic question (hasSoldHouse). In this example, we can
observe an incomplete conditional inside the hasSoldHouse
question. Thanks for the category highlighting; the environ-
ment is highlighting to the user that they must use a block
from the Expr or Id categories to complete the definition of
the conditional block.

VII. DISCUSSION

The introduction of Category Highlighting, aimed at im-
proving visual clarity and user experience within Blockly
environments. To the best of our knowledge, this is the
first highlighting system for block-based environments. While



Fig. 9: Example QL program to define a simple tax form.

the impact of this improvement on user interaction and en-
gagement is evident in qualitative observations, and personal
experience, there is the need of conducting a user study to
understand the impact of this feature in practice.

We observed and experienced that the inclusion of this
feature enhances the visual representation of the Toolbox
categories, making it easier for users to distinguish between
different block categories and fostering a more intuitive pro-
gramming experience. However, due to time constraints and
limited access to a diverse user base, gathering user feedback
was not feasible. Nevertheless, we tried the features in four
different languages as shown in Section VI, and informally,
users inside the authors’ network who tried the Category
Highlighting feature expressed positive responses, citing im-
proved ease of use and reduced cognitive load when navigating
through the block-based environment canvas. Their feedback
and our experience suggest that the enhancement would likely
contribute to the overall improvement of the Kogi-generated
environments, and Blockly environments in general.

VIII. CONCLUSIONS & FUTURE WORK

The case studies in Section VI suggest that adding Cate-
gory Highlighting in visual programming environments may
enhance the user experience within Blockly environments.
However, it is essential to acknowledge certain limitations and
considerations that emerged during the study. Specifically, the
case study on the State Machine language highlighted that
certain languages may not experience significant improve-
ments due to their inherent simplicity. Identifying the types
of languages most likely to benefit from these enhancements
would be valuable for tailoring improvements to better suit
specific use cases.

In conclusion, this paper presents improvements in Block-
based environments implemented within Kogi that might en-
hance user experience in visual block-based environments. To
ensure further progress, it is crucial to consider the challenges
and nuances that may arise. By prioritizing user needs and
finding the right balance between block reduction and code
readability, we can create a more effective and refined Kogi,
enhancing the user experience to an even greater extent.

Overall, this exploration of improving block-based environ-
ments lays the groundwork for further research and devel-
opment within the context of improving user experience in

Blockly environments using Kogi. Some suggestions for future
work and investigation:

User Studies: Conducting large-scale user study with di-
verse participants will provide a more in-depth understanding
of the effectiveness of the proposed improvement. Gathering
feedback from practitioners and novices with a diverse pro-
gramming levels and tasks would yield valuable insights.

Language-Specific Enhancements: Tailoring Kogi’s im-
provements to specific programming languages could maxi-
mize their impact. Investigate language-specific features that
may benefit from optimization and streamline the code gener-
ation process accordingly.

User-Centric Design: Apply user-centric design method-
ologies to continuously improve the programming experience
using visual programming environments based on feedback
and user needs. This approach ensures that future iterations of
Kogi are well-suited to the preferences and requirements of
the specific-programming community.

Cross-Platform Support: Investigate ways to make Kogi
compatible with other block-based programming environments
and existing IDEs (e.g., VSCode or JetBrains IDEs).

REFERENCES

[1] D. Weintrop, “Block-based programming in computer science educa-
tion,” Communications of the ACM, vol. 62, pp. 22–25, 07 2019.

[2] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable
programming,” Communications of the ACM, vol. 60, pp. 72–80, 05
2017. [Online]. Available: https://arxiv.org/pdf/1705.09413.pdf

[3] D. Weintrop and U. Wilensky, “To block or not to block, that is
the question,” Proceedings of the 14th International Conference on
Interaction Design and Children, 06 2015.

[4] T. W. Price and T. Barnes, “Comparing textual and block interfaces
in a novice programming environment,” in Proceedings of the Eleventh
Annual International Conference on International Computing Education
Research, ser. ICER ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 91–99.

[5] L. Moors and R. Sheehan, “Aiding the transition from novice to
traditional programming environments,” in Proceedings of the 2017 Con-
ference on Interaction Design and Children, ser. IDC ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 509–514.

[6] D. Weintrop and U. Wilensky, “Between a block and a typeface: Design-
ing and evaluating hybrid programming environments,” in Proceedings
of the 2017 Conference on Interaction Design and Children, ser. IDC
’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 183–192.

[7] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems - CHI ’18,
pp. 1–12, 2018.

[8] M. Verano Merino and T. van der Storm, “Block-based syntax from
context-free grammars,” in Proceedings of the 13th ACM SIGPLAN
International Conference on Software Language Engineering, ser. SLE
2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 283–295. [Online]. Available: https://doi.org/10.1145/3426425.
3426948

[9] Getting grammars into shape for block-based editors. Association
for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.
1145/3486608.3486908

[10] T. Beckmann and M. Verano Merino, “S/kogi.” [Online]. Available:
https://doi.org/10.5281/zenodo.5534113

[11] E. Pasternak, R. Fenichel, and A. Marshall, “Tips for
creating a block language with blockly,” 2017. [Online].
Available: https://developers.google.com/blockly/publications/papers/
TipsForCreatingABlockLanguage.pdf

[12] “Blockly — google developers,” Google Developers, 2019. [Online].
Available: https://developers.google.com/blockly

https://arxiv.org/pdf/1705.09413.pdf
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.5281/zenodo.5534113
https://developers.google.com/blockly/publications/papers/TipsForCreatingABlockLanguage.pdf
https://developers.google.com/blockly/publications/papers/TipsForCreatingABlockLanguage.pdf
https://developers.google.com/blockly


[13] M. Verano Merino and T. van der Storm, “Kogi.” [Online]. Available:
https://doi.org/10.5281/zenodo.4033220

[14] “The rascal meta programming language — the rascal meta
programming language,” www.rascal-mpl.org. [Online]. Available:
https://www.rascal-mpl.org/

[15] P. Klint, T. van der Storm, and J. J. Vinju, “Easy meta-programming
with rascal. leveraging the extract-analyze-synthesize paradigm for meta-
programming,” in Proceedings of the 3rd International Summer School

on Generative and Transformational Techniques in Software Engineer-
ing (GTTSE’09), ser. LNCS. Springer, 2010.

[16] A. W. Services. (2024) Aws cloudformation documen- tation.
[Online]. Available: https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/aws-resource-ec2-instance.html

[17] Rascal. (2017) Pico. [Online]. Available: https://www.rascal-mpl.org/
docs/Recipes/Languages/Pico/

https://doi.org/10.5281/zenodo.4033220
https://www.rascal-mpl.org/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-instance.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-instance.html
https://www.rascal-mpl.org/docs/Recipes/Languages/Pico/
https://www.rascal-mpl.org/docs/Recipes/Languages/Pico/

	Introduction
	Block-based Environments
	Kogi
	Challenges in Block Composition and User Guidance in Block-Based Environments
	Category Highlighting to Enhance Block Composition in Blockly
	Case Studies
	CCL
	Pico
	QL

	Discussion
	Conclusions & Future Work
	References

