
The Ecosystem of Open-Source Music Production
Software – A Mining Study on the Development

Practices of VST Plugins on GitHub
Bogdan Andrei

Informatics Institute
University Of Amsterdam

Amsterdam, the Netherlands
b.m.andrei@uva.nl

Mauricio Verano Merino
Computer Science Department
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

m.verano.merino@vu.nl

Ivano Malavolta
Computer Science Department
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

i.malavolta@vu.nl

Abstract—In this study we shed light on a unique and interdis-
ciplinary domain, where music, technology, and human creativity
intersect: music production software. Today software technologies
are the predominant means of music production, with a vibrant
ecosystem for commercial and open-source products.

In this work we target VST plugins, the de-facto standard
for developing and prototyping music production software. We
analyze 15,847 data points over 299 GitHub repositories contain-
ing VST plugins. Our results include a systematic quantification
of the (i) characteristics of open-source VST projects in terms
of, e.g., duration, size, contributors, stars/watchers, licensing, (ii)
most used technologies for developing VST plugins, and (iii) code
quality and testing practices in VST projects.

Our findings provide a comprehensive understanding of the
current state of the practice in VST plugins development, high-
lighting successful projects, opportunities for improvement, and
future research directions for software engineering researchers.

I. INTRODUCTION

Software technologies are the prevalent tool in music pro-
duction over the past decades [1]. Artists with millions of
online streams and multiple Grammy nominations such as
Depeche Mode, Daft Punk, Ed Sheeran, and many more
are known to be using Digital Audio Workstations (DAWs)
such as Ableton Live, Apple Logic Pro, and Image Line FL
Studio [2], [3] in their music production process. The main
reasons for the success of DAWs include, among many: (i)
their integration with sophisticated tools for editing, mixing,
and mastering, allowing artists to go deeper into sound design
and music composition, (ii) the possibility of connecting real-
time instruments to DAWs via standard interfaces, and (iii)
the possibility for artists to have the freedom to explore ideas
without the constraints of a traditional studio [2].

In 1996, the Virtual Studio Technology (VST) [4] has been
introduced as an open software interface which allows third-
party developers to create software instruments and effects
in the form of plugins that can be integrated into existing
DAWs [5]. The VST technology opened up new possibilities
for music producers and creatives, enabling the usage of a
wide range of audio processing tools within the DAW without
the need of physical musical instruments [6]. Currently, many

of the major DAWs are compatible with VST and can act as
VST host applications [5].

The technical success of VST is also confirmed by its florid
ecosystem of developers, distributors, and publishers. The
global audio plugins market, which includes VST plugins, is
projected to reach approximately 3.25 billion dollars by 2030
and is growing at a compound annual growth rate (CAGR)
of 15.2% from 2023 to 2030 [7]. Prestigious manufacturing
companies – e.g., Yamaha, Moog, Korg – which historically
were specialized on hardware musical instruments only, are
diversifying their offer now by developing their own pure
software-based instruments via VST plugins, some of them
even running in the Cloud (e.g., Roland Cloud [8]). The
open-source ecosystem of VST plugins is equally vibrant;
for example, as of October 2024, the GitHub repository of
JUCE, a C++ framework for developing VST plugins, has
6.6k stars, 1.7k forks, 14k commits, and more than 1.4k issues
and pull requests [9]. The JUCE framework is actively used
by organizations like Fender, Yamaha, Bose, Arturia and it is
used in educational contexts as well, e.g., in the Center for
Computer Research in Music and Acoustics at Stanford [10].

Despite their heavy use in today’s music industry, an aspect
that still remains unexplored is how practitioners develop
VST plugins. Studying such practices is relevant since the
development of a VST plugin is a complex and highly in-
terdisciplinary activity, requiring knowledge in analog/audio
and digital signal processing, music theory, sound synthesis,
high-performance software development, and human-computer
interaction [6]. Moreover, developing VST plugins is still
a craftmanship activity with limited software engineering
body of knowledge supporting practitioners towards developing
high-quality software in terms of, e.g., performance, reliability,
and maintainability.

The goal of this study is to characterize the ecosystem
of open-source VST plugins and how practitioners develop
VST plugins in real contexts. In this study we target open-
source VST projects on GitHub since (i) the VST open-source
community is primarily active on the GitHub platform.

In this work, we apply software repository mining tech-

niques [11] targeting the source code, documentation, com-
mits, and pull requests in 299 GitHub repositories containing
real open-source VST plugins. We extract a total of 15,847
individual data points, which we then analyze both quantita-
tively and qualitatively. Our analysis allows us to synthesize
an objective characterization of the state of the practice in
VST plugins development in terms of: (i) characteristics of
the projects (e.g., duration, size, contributors, licensing, etc.),
(ii) used technologies, and (iii) applied code quality practices.

The main contributions of this study are: (i) a reusable
dataset with 15,847 data points about 299 real VST projects
on GitHub, (ii) a systematic characterization of the state of
the practice with respect to music production software, (iii)
a discussion of the obtained results, including their main
implications, and (iv) the full replication package of the study.
This study is the first empirical investigation on (open-source)
VST plugins for music production.

The target audience of this study includes: (i) VST practi-
tioners for getting an objective characterization of the state
of the practice of VST plugins development and position
themselves in such ecosystem; (ii) musicians and creatives
in general who can use our results as a map for better
understanding the VST plugins ecosystem and possibly select
candidate open-source VST plugins they can use in their
productions; (iii) software engineering researchers who can
use the results of this study and the research lines we suggest
as inspiration for future research contributions.

II. BACKGROUND AND RELATED WORK

A. Virtual Studio Technology (VST)

Audio processing plugins provide specialized audio pro-
cessing capabilities to be used within a DAW [12] or other
compatible software for music production and audio editing.
As of today, several technologies exist for developing audio
processing plugins, such as CLAP [13], AAX [14], and
LV2 [15]. One of the most commonly-used technologies is
VST [4], introduced by Steinberg in 1996. Most of VST
plugins are either instruments (i.e., VSTi) or sound effects
(i.e., VSTfx). VSTis generate audio by imitating real-life
instruments (e.g., synthesizers, guitars, drums), while VSTfxs
process audio by performing the same functions as hardware
audio processors (e.g., delay, reverb, distortion, phaser) [6].

Figure 1 illustrates the anatomy of a typical VST plugin.
The two main subsystems of a VST plugin are (i) the Graphical
User Interface (GUI) and (ii) the Digital Signal Processing
(DSP) [6]. The GUI provides a custom user interface allowing
users to control various VST Parameters, such as volume or
pitch. These parameters are then sent to the DSP subsystem,
where the Digital Processor processes the data values set by
the user (e.g., set the volume to 5dB). The DSP subsystem
manipulates the digital signals coming from the VST host
(e.g., the DAW) according to user-defined VST parameters.
VST plugins often also include support for the Musical In-
strument Digital Interface (MIDI [17]), allowing the plugin
to send, manipulate, and receive MIDI events representing
musical instructions, such as pitch, timing, and loudness of

Fig. 1: Anatomy of a VST plugin based – example based on
the surge-synthesizer/surge VST plugin deployed
in the Ableton Live [16] DAW.

notes. The role of the audio interface is to (i) convert the
analog signal, collected from sound sources (e.g., instruments
and microphones, or other audio lines), into a digital signal
via the Analog-to-Digital (A/D) Converter and (ii) send the
digital signal to the DAW for manipulation according to the
loaded VST plugins. Once the digital signal is processed, it is
sent to the audio interface again and converted back into an
analog signal by the Digital-to-Analog (D/A) Converter. The
reconstructed analog signal is then sent back to monitors (e.g.,
headphones or speakers).

B. Related work

Music Software Development: The study of software
development for music is a multidisciplinary research field
that brings together individuals from diverse backgrounds,
including music, signal processing, computer science, and
electronics [18]. For example, in 2010, Damnjanovic et al. [19]
conducted a survey to explore the demographics of the UK
audio and music research community. This study highlights the
diversity within this community, examining the tools employed
in music software development and the challenges of ensuring
software reproducibility. Similarly, Cannam et al. [18] intro-
duced the Sound Software, aimed at supporting audio and
music researchers in the UK. This work identified critical
software engineering challenges faced by researchers, such
as lack of confidence in programming, insufficient knowledge
of code management tools and practices, and difficulties with
code reusability due to platform incompatibilities.

In many cases, music software development is carried out by
end-users – individuals without formal technical backgrounds.
Researchers have investigated the processes and tools used
by these end-user developers. Burletet al. [20] analyzed the
software development practices of computer musicians, a

https://www.github.com/surge-synthesizer/surge

community of end-user programmers who often use visual
music-oriented languages like Max/MSP and Pure Data. They
compared software development practices in Max/MSP or
Pure Data repositories versus general software repositories.
Similarly, Islam et al. [21] conducted a systematic analysis
of over 6,000 repositories containing Pure Data programs,
offering insights into the programming habits and trends
within this community.

VST Plugin Development: Despite the vibrant ecosystem
of the music industry, there is relatively little research on
VST plugin development and music production software in
general. Reuter [2] studied the music production practices of
hip-hop and EDM artists and their potential impact on pop
music production. Among many, one of the most important
results of this study is that hip-hop and EDM artists tend to
use DAWs that are less and less based on the metaphor of the
recording studio (e.g., think about the concept of track and
instrument) and more on a game-like trial-and-error compo-
sitional combination of third-party loops, presets, and other
music production services that are typically provided via the
Cloud. Stickland et al. proposed an online DAW collaboration
framework for improving the studio mixing experience of
artists working remotely [22]. The framework allows up to 30
artists to synchronously communicate with each other, while
performing remote audio mixing in real-time on a shared DAW
project and receiving updates of remote collaborators’ actions.
A recent study proposed the integration of generative musical
systems directly in the DAW [23]; the proposed plugin allows
creatives to execute Python expressions at runtime directly in
the timeline of the DAW, promoting Python code to a fully-
fledged (virtual) instrument playing together with all the other
audio/MIDI tracks. As of today, those studies acknowledge to
some extent the presence of VST plugins, but none of them
targeted how VST plugins are developed in practice.

Observational studies: Several observational studies ap-
plied mining software repositories techniques similar to ours to
study the development practices in open-source communities.
For example, Choetkiertikul et al. [24] focuses on understand-
ing the characteristics of Jupyter Notebooks hosted on Kaggle
and GitHub that are used in data science projects. Malavolta
et al. [25] conducted a mixed-method observational study
about the state-of-the-practice of robotics software develop-
ment in terms of targeted quality attributes and architecture
documentation in the context of 399 real open-source projects.

III. STUDY DESIGN

We designed and conducted this study according to well-
established guidelines for mining software repositories on
GitHub [11] and empirical software engineering [26], [27].

To ensure independent verification of this study, we provide
a complete replication package [28] containing both raw and
aggregated data and all mining, analysis, and plotting scripts.

A. Goal and Research Questions

Following the template by Basili et al. [29], the goal of
this study is to analyse the VST plugins ecosystem for the

GitHub

Initial
search

1,498
repositories

VST, VST2, VST3, VSTs,
VST-plugin, VSTi,

VSTfx

Systematic
selection

299
repositories

Criteria

Data
extraction

Data
Analysis

Extracted
data

GitHub
API

GitHub API

3 researchers
Sonar
Qube

Fig. 2: Overview of the Study.

purpose of characterizing their main development practices
with respect to project characteristics, technologies, and code
quality from the point of view of VST plugin developers,
musicians and creatives, and researchers in the context of
open-source VST projects on GitHub. This goal is achieved
by answering the following research questions (RQs).
RQ1 – What are the main project characteristics of
VST projects on GitHub? This RQ quantitatively assesses
(i) the spread of VST projects on GitHub, (ii) their main
characteristics in terms of repository metadata (e.g., repository
age, number of commits, open/closed pull requests, stars,
watchers, and licenses), and (iii) the categories of the projects
(i.e., instrument or audio effect). Audience: VST developers,
musicians and creatives, and researchers.
RQ2 – What are the most used technologies in VST
projects on GitHub? This RQ aims at building a map of the
most used programming languages, development frameworks,
and libraries in VST plugin development. Audience: VST
developers, researchers.
RQ3 – What are the main code quality practices applied in
VST projects on GitHub? This RQ aims at building a map of
the level of quality of the source code of VST projects in terms
of presence of bugs, code smells, vulnerabilities, cyclomatic
and cognitive complexity, presence of comments, and adoption
of testing practices. Audience: VST developers, researchers.

B. Initial Search

As shown in Figure 2, we first query via the GitHub REST
API for all repositories whose topic is strictly related to VST
development; Figure 2 reports the specific keywords of our
search; all keywords represent the abbreviation of Virtual Stu-
dio Technology Plugin [4], alongside its category (i.e., VSTi,
VSTfx), versions (i.e., VST2, VST3), and their syntactical
variations. We decided to scope our search on GitHub topics
since (i) we are interested in a very specific technology (i.e.,
VST) with no strong syntactical variations in its name, and
(ii) a preliminary search of the most popular open-source VST
plugins [30] revealed that they tend to be consistently tagged
as VST projects on GitHub. After duplicates removal, this step
leads to 1,498 potentially-relevant repositories.

C. Systematic Selection

Inspired by the systematic literature review method [26],
we manually analyze each of the 1,498 repositories and
select those fulfilling the inclusion and exclusion criteria (see

Table I). A repository is included into the dataset if it satisfies
all the inclusion criteria and none of the exclusion criteria.

TABLE I: Selection criteria for VST projects on GitHub.
ID Description

I1 Repositories containing VST plugins, either standalone (i.e., providing stan-
dalone VST hosts) or DAW-compatible ones.

I2 Repositories containing the source code of a VST plugin that can be
(compiled and) executed on a physical machine.

E1 Repositories containing DAWs/hosts, instead of VST plugins.
E2 Repositories whose README file is not written in English.
E3 Repositories containing only a README file, without source code.
E4 Repositories contaning standalone applications that use VST’s hosts.
E5 Repositories containing frameworks/libraries for developing VST plugins.
E6 Repositories without README file.
E7 Repositories containing tutorials, demos, or template projects.
E8 Repositories containing audio samples for already existing VST plugins.
E9 Repositories consisting of a replication package for a scientific study (e.g., a

study on distortion effects, resonance, etc.).

Three researchers are involved in this phase, and emerging
conflicts are resolved collaboratively. The selection is done in
four rounds: in the first three rounds, we use 200 repositories
that are classified independently by the three researchers.
Then, their agreement level is statistically assessed via the
Cohen Kappa statistics, and a discussion on the differences
between researchers takes place. In the first round, we ob-
tained an average value of 0.58 (moderate agreement), 0.67
(substantial agreement) in round 2, and 0.83 (almost perfect
agreement) in round 3. Given the high level of agreement
reached in the third round, the remaining 898 repositories are
classified by one researcher. This phase led to the final set of
299 GitHub repositories containing open-source VST plugins
usable in real-world contexts.

In order to provide context to our quantitative results in
RQ1, we also build a random sample of 299 GitHub projects
that are not containing VST plugins. This sample will act
as a baseline for the main findings in RQ11. The sample is
constructed in such a way that (i) selected GitHub repositories
have the same distribution of the 299 mined VST projects in
terms of used programming languages, age, and freshness and
(ii) all selected GitHub repositories satisfy non-VST-related
selection criteria (i.e., E2, E3, E6, E7, E9 in Table I). Due to
the peculiarity of some programming languages (e.g., CSound
Document for maxklint/patch-discord), we ob-
tained a final set of 286 baseline GitHub projects.

D. Data extraction

In this phase we locally collect all data required to properly
answer the RQs of the study. Table II presents the metrics that
we collect for each repository on GitHub, grouped by RQ. We
used the following complementary sources and tools:

• The full text of the README file in the main branch
of the repository (299 data points).

• GitHub metadata about the analysed repository, mined
via the official GitHub REST API (6,877 data points).

• The full text of all source code files contained in the
main branch of the repository (416,642 files in total).

1Due to available resources, we collect only automatically-computable
characteristics from non-VST projects (e.g., number of commits, size, etc.).

TABLE II: Extracted metrics for each GitHub repository.
Metric Source/tool Analysis method

RQ1 – Main project characteristics

VST category (i.e., instrument, effect) Card sorting
GitHub Topics Summary statistics
Repository creation date Summary statistics
Repository age Summary statistics
Repository freshness Summary statistics
Repository size Summary statistics
Number of Commits Summary statistics
Number of Forks Summary statistics
Number of Stars Summary statistics
Number of Watchers Summary statistics
Number of Open PRs Summary statistics
Number of Closed PRs Summary statistics
Number of Contributors Summary statistics
Contributors’ experience in years Summary statistics
Repository owner type (i.e., organiz. or user) Summary statistics
License type (e.g., GPL, MIT) Summary statistics

RQ2 – Most used technologies

Programming languages Card sorting
Frameworks Card sorting
Libraries Card sorting

RQ3 – Code quality practices

Number of code smells Summary statistics
Number of bugs Summary statistics
Number of vulnerabilities Summary statistics
Cyclomatic complexity Summary statistics
Cognitive complexity Summary statistics
Comment lines density Summary statistics
Mentions of testing Card sorting
Automated testing Card sorting

• The report produced by SonarQube v10.3, with quality
gate set to Sonar way and the default quality profile for
each used programming language (1,794 data points).

SonarQube [31] is a commonly-used static code analyzer,
both in academia [32], [33] and in practice, with more than
400k organizations using it [31]. SonarQube is based on
sets of language-specific rules, continuously kept up-to-date
by their development team; for example, the standard C++
quality profile contains 672 rules, organized into four groups:
bugs, vulnerabilities, code smells, and security hotspots. All
together, we extract a total of 15,847 individual data points
about the 299 analysed GitHub repositories containing VST
plugins, to be further analyzed in the next phase.

E. Data analysis

We use both qualitative and quantitative techniques to
analyze the extracted data and to minimize bias, all the data
analysis activities involve three researchers.

Being this study purely observational and based primarily
on metrics with a ratio scale [27, Ch. 6], the majority of
the metrics are analyzed and interpreted by computing their
summary statistics (see Table II), followed by a combination
of data summarization and visualization techniques based on
tables, histograms, boxplots, and violin plots.

Other metrics have a categorical scale (e.g., used frame-
works). In those cases, we apply a process inspired by the
(open) card sorting technique [34]. For each metric, we

https://www.github.com/maxklint/patch-discord

perform the card sorting in two phases: (i) we code each
repository with its representative information about the data
point (e.g., the specific audio effect supported by the VST
plugin) and (ii) we group the extracted codes into meaningful
groups with a descriptive title (e.g., whether the VST plugin is
a virtual instrument or an audio effect). Subsequently, we use
summary statistics to quantitatively summarize the categorized
data about each metric. This mixed-method procedure enables
us to understand the data and draw meaningful conclusions.

IV. MAIN VST PROJECT CHARACTERISTICS (RQ1)

A. VST category and used GitHub topics

VST plugins come in various forms. For this study, we clas-
sify them into three categories: (i) virtual instruments (VSTi)
such as synthesizers and samplers, (ii) audio effects (VSTfx)
such as reverb, distortion, and delay, and (iii) repositories
containing both VSTi and VSTfx. Our analysis revealed that
the majority of repositories, 219 (73.2%), focus on VSTfx,
while 76 repositories (25.4%) contain VSTi. A small subset,
4 repositories (1.4%), consists of plugin packs containing both
types of plugins (e.g., zamaudio/zam-plugins).

Fig. 3: Overview of the most common VST categories.

Figure 3 presents the most common VST instruments
(VSTi) and VST effects (VSTfx) in our dataset. For
readability purposes, we only include instruments that appear
at least 3 times in different repositories and effects that occur
in at least 4 repositories. We can observe that the set of VST
instruments is less diverse than the set of VST effects; 9
repositories (11.8% of the total VSTi) contain unique VSTis,
while 169 repositories (77.2% of the total VSTfx) contain
unique VSTfxs. The reverb effect is the most common
(e.g., reillypascal/RSAlgorithmicVerb),
followed by distortion (e.g., MeijisIrlnd/Transfer),
delay (e.g., Mg32/SymmetricPingPongDelay), and
equalizers (e.g., Djaugo/EQ_Lite-Vst-Plugin-Win).
In contrast, virtual instruments (VSTi) show
a more homogeneous distribution; synthesizers
(e.g., AnClark/Minaton-XT) are the most popular ones,
followed by samplers (e.g., silver-yar/ap_sampler).

GitHub topics represent the tags associated with a repos-
itory on GitHub, and each repository can have multiple tags.
The upper part of Figure 4 displays a co-occurrence matrix
of the top-20 topics in the dataset and its lower part shows a
subset of the most common tags since 2011 , and compares
with the last five years. We can observe that vst it is the most
used topic (186 repositories – 62.2%), closely followed by
vst3 (152 repositories – 50.8%), and juce (95 repositories
– 31.8%). However, if we look at the last 5 years data, it shows

Fig. 4: Topics used across repositories since 2011.

a shift, particularly with the growth of vst3 as a dominant
topic across 136 repositories (45.5%). The third most popular
topic is the JUCE [35] framework. This is not surprising since
JUCE is one of the most actively used specialized frameworks
for developing VST plugins.

B. Repository Characteristics

Figure 5 shows the creation date of the repositories in our
dataset. mzuther/K-Meter, the first open-source VST
plugin in our dataset, was created in 2011.

We can also observe that the year with the most created
repositories for VST plugins on GitHub is 2021, and after that,
the creation of VST repositories seems to be slightly slowing
down. The median age of selected repositories is 818 days (2.2
years), suggesting that VST plugin development is still rela-
tively young. The median freshness, measured by the number
of days since the last commit, is 431 days, indicating that
most repositories are actively maintained with relatively recent
updates. The median size of selected repositories is 2,095 KB,
with sizes ranging from 1 KB (e.g., alexyer/digidist)
to 647,857 KB (e.g., publicsamples/Peach). Notably,
the Peach plugin is the largest, as it includes images and preset
files specific to the plugin.

https://www.github.com/zamaudio/zam-plugins
https://www.github.com/reillypascal/RSAlgorithmicVerb
https://www.github.com/MeijisIrlnd/Transfer
https://www.github.com/Mg32/SymmetricPingPongDelay
https://www.github.com/Djaugo/EQ_Lite-Vst-Plugin-Win
https://www.github.com/AnClark/Minaton-XT
https://www.github.com/silver-yar/ap_sampler
https://www.github.com/mzuther/K-Meter
https://www.github.com/alexyer/digidist
https://www.github.com/publicsamples/Peach

Fig. 5: Year of creation of the repositories.

C. Repository Activity

Table III and Figure 6 show the repositories activity descrip-
tive statistics. For the sake of space, we describe only the most
salient points we observe when looking at this data points.

TABLE III: Repositories and contributors descriptive statistics.

Repositories Mean STD Min. Q1 (25%) Q2 (50%) Q3(75%) Max

Age (days) 996.04 882.55 0 265.5 818 1456 4356
Freshness (days) 644.87 666.01 13 119.50 431 950.50 3168
Size (Kb) 21559.41 66325.79 1 253.5 2081.00 10194.00 647857.00
Commits 58.79 355.51 1 1 1 1 4740
Forks 6.20 27.43 0 0 1 3 341
Stars 75.84 331.83 0 2 6 30 3847
Watchers 1.77 9.76 0 0 0 0 128
Open Pull Requests 0.16 0.70 0 0 0 0 7
Closed Pull Requests 17.03 250.67 0 0 0 0 4330
Maintainers’ efficiency 0.07 0.25 0 0 0 0 0.99
Contributors 1.57 4.32 1 1 1 1 68
Contributors’ experience 3281.29 1306.23 368 2189.5 3414.5 4278.25 6040

Fig. 6: Repositories and contributors descriptive statistics.

First of all, average age of selected VST plugins is ∼996
days (about 2.7 years), with a relatively symmetrical distribu-
tion within Q1 and Q3 and a long tail of long-lived projects
that are active since more than 3 years. The freshness metric
has a similar distribution as that of age, with a median value
of ∼431 days (about 1.18 years); this result, together with the
median, tells us that the majority of studies projects had their
last commit more than one year ago. This observation finds
support in other metrics as well and they represent a significant
difference in the level of activity and engagement between a
small number of highly successful projects and the majority.
We elaborate further on these aspects in Section VII.

Moreover, we can observe that the distributions of the
number of commits, contributors, watchers, and open and

closed pull requests (PRs) are positively skewed. Specifically,
75% or more of the data points for the number of watchers,
open pull requests, and closed pull requests are zero, while
the distributions of number of commits and contributors
exhibit a similar pattern, with 75% of the values being one.
The distributions of the number of forks and stars follow
a comparable trend; however, the number of forks shows a
slight increase in the second (Q2) and third quartiles (Q3).
In contrast, the number of stars displays more variability
across all quartiles, although the differences between them
remain small. Upon closer examination of the number of open
and closed pull requests, we observe a substantial disparity
between the maximum values for each. A low number of open
pull requests (e.g., 7) suggests that the repositories are likely
well-maintained and up-to-date, with maintainers processing
pull requests efficiently, closing most as they are reviewed
and addressed, or indicating limited use of pull requests by
contributors. Conversely, a high number of closed pull requests
(e.g., 4,330) indicates a significant level of contribution and
code changes over time. However, the distribution reveals
that this is not representative of all repositories, but rather
characteristic of a select few. Maintainers’ efficiency refers
to the ratio between closed PRS and all PRs. We can observe
that for most of the repositories this is zero, which is aligned
with the observed behavior in the open and closed PRs.

When comparing the repository activity of VST projects
against non-VST projects (our baseline in Figure 6), we ob-
serve the following: (i) the size of VST projects (21559.41 Kb)
is on average smaller than the size of non-VST projects (79358
Kb), but not statistically (Mann-Whitney test with p=0.5003),
(ii) non-VST projects have a statistically-significant higher
number of commits, forks, and stars, (iii) similarly, non-VST
projects have statistically-significant higher number of watch-
ers, open/closed issues and pull requests, but their median is
equal to 0 for both VST and non-VST projects, and (iv) non-
VST projects have a statistically-significant higher number of
contributors, but their median is 1 for both VST and non-VST
projects.

D. Contributors, ownership, and licensing

The contributors’ experience represents the ”age” of a
user’s GitHub profile in days. As shown in Table III, the distri-
bution is slightly negatively-skewed, with the mean (3,281.29
days, ≈9 years) slightly lower than the median (3,414.5 days,
≈9.3 years). Moderate variability is evident from the standard
deviation (368 days, ≈1 year) and a broad interquartile range
(IQR = 2,088.75 days, ≈5.7 years), reflecting substantial
spread in the middle 50% of the data.

Repositories Ownership refers to whether the repository is
created by individuals or organizations. Individual developers
dominate VST plugin development, being involved in 257
repositories (85.9%), while organizations are responsible for
42 repositories (14.1%). We observe that Pongasoft [36] leads
with 4 VST plugins, followed by Wolf-plugins [37] with 3
plugins. Other organizations typically maintain 1 or 2 plugins.

Fig. 7: Distribution of used licenses.

Figure 7 shows the 15 different types of licenses that we
observed in our dataset. The two most popular licenses are
GPL-3.0 [38] and MIT [39]. The first one is the most prevalent,
used in 127 repositories (42.5%). The MIT license is the third
most popular, featured in 53 repositories (17.7%). No license is
specified in 79 repositories (26.4%), i.e., the default copyright
law applies, based on GitHub policies. Indeed, despite being
hosted in a public open-source environment, GitHub states
clearly that if a repository is not licensed, the developers retain
all rights to their source code and no one may reproduce,
distribute, or create derivative works from their work [40].

When comparing these results with non-VST projects, we
observe that (i) non-VST projects exhibit the same trends
about ownership, with 222 repositories owned by individual
users and 64 repositories owned by organizations and (ii) in
line with the results of VST projects, the most used license
in our sample of non-VST projects is MIT (76), followed by
GPL-3.0 (38) and Apache 2.0 (30), and (iii) a large number of
non-VST projects does not specify any license as well (85).

V. MOST USED TECHNOLOGIES (RQ2)

A. Programming Languages

Figure 8 displays the top 15 programming languages
(PLs) used across repositories each year, as reported on
GitHub. It is important to note that a single repos-
itory may use multiple PLs. The most common lan-
guage is C++, featured in 255 repositories (85.3%
of the dataset) (e.g., xivilay/scale-remapper,
nathanjhood/Biquads), followed by C, which is used

in 174 repositories (58.2%) (e.g., vertver/Dynation).
We can categorize these top 15 languages into two main
groups: configuration languages and utils (CMake, MakeFile,
and BatchFile, and Inno Setup [41]), and general-purpose
languages (GPLs) like Python, R, or Rust. Most of these
are well-known languages for programmers, however, it is
interesting to observe the appearance of Inno Setup, which
is a free installer for Windows programs.

In Figure 8 we also observe that C++ has been used
consistently since the early days of VST plugin development

Fig. 8: Top 15 programming languages per year.

in 2011 (see Section IV). Its usage has steadily increased,
peaking in 2021–the same year that saw the highest number
of VST plugin creations on GitHub (Figure 5). However,
its usage has declined in subsequent years, following the
same downward trend as the plugin creation metric. This
is correlated to the decrease in the creation of repositories
(Figure 5) .Additionally, other GPLs like e.g., Python, R, and
Rust are present in VST plugin development but are less
common than C-like languages.

To gain a clearer understanding of VST plugin development,
we analyzed the number of programming languages (PLs) used
per repository to better grasp the technological stack employed
in these projects. Most repositories use between 2 and 5
languages (mean = 3.8, std = 2.75). Notably, some projects
use more than 10 languages, with one repository utilizing up
to 15. This suggests that VST plugin development typically
requires proficiency in at least two languages, often including
both general-purpose and configuration languages.

B. Frameworks

Table IV shows the top-10 most used frameworks in our
dataset. It can be seen that JUCE is used in 152 repositories
(50.84% – e.g., QVbDev/quantumVerb). The second
most popular framework is DPF [42] which is used in 21
repositories (7% – e.g., Wasted-Audio/wstd-eq).
It is surprising to observe that 52 repositories (17.4%
– e.g., Husenap/VSTakoyaki) do not use any
frameworks at all. When manually inspecting these
52 repositories, we discover that only 3 of them
(amsynth/amsynth, sfztools/sfizz-ui,
and greatest-ape/OctaSine) have stars, watchers,
contributors, opened/closed issues. When compared to the
other repositories, the stars, watchers, and contributors
numbers are far greater than the median values for those
metrics (see Table III), having a repository freshness of less
than 50 days, thus suggesting that they are active projects.

C. Libraries

In Section V-A we observed that the most utilized PLs are C
and C++. They can have two types of libraries, using header

https://www.github.com/xivilay/scale-remapper
https://www.github.com/nathanjhood/Biquads
https://www.github.com/vertver/Dynation
https://www.github.com/QVbDev/quantumVerb
https://www.github.com/Wasted-Audio/wstd-eq
https://www.github.com/Husenap/VSTakoyaki
https://www.github.com/amsynth/amsynth
https://www.github.com/sfztools/sfizz-ui
https://www.github.com/greatest-ape/OctaSine

TABLE IV: Top-10 VST plugin development frameworks.
Name #Repos #Stars #Watchers #Contributors

JUCE [43] 159 6.6k 257 50
DPF [44] 21 658 23 23
VST3-SDK [45] 9 1.6k 95 3
VST-SDK 8 - - -
nih-plug [46] 7 1.7k 41 30
Jamba [47] 4 122 8 1
VST-RS [48] 4 1k 26 40
WDL-OL [49] 3 935 101 14
iPlug2 [50] 3 1.9k 61 57
Cabbage [51] 3 517 25 11

[52] or compiled library [53] files. By manually analyzing
our dataset, we observed that 243 repositories (81.3% – (e.g.,
ffAudio/Frequalizer) employ header files, while the

other 56 repositories (18.7% – (e.g., igorski/VSTSID)
use a combination of header and compiled library files. This is
expected considering that the predominant framework, JUCE
(Section V-B), is only available through the inclusion of header
files. Additionally, the usage of header files enables flexibility
in compiling source files with different configurations or
implementations [54]. However, employing header files can
introduce drawbacks such as increased compilation time [55],
and code duplication (see Section VI-A).

TABLE V: Top-10 libraries used for developing VST plugins.
Name Description #Repos PL

rand Pseudo-random number generators for various distributions. 8 Python
os Portable way of using operating system dependent functionality. 6 Python
vst Support for creating VST2 plugins. 6 Rust
log Lightweight logging facade. 5 Rust
simplelog Logging facilities that can be easily combined. 5 Rust
Serde Serializing and deserializing Rust data structures. 5 Rust
glob Querying the file system with a particular pattern. 4 Rust
sys Help Rust programs use C (”system”) libraries. 4 Rust
shutil Execute shell command pipelines and return stdout. 4 Rust
rust-vst Support for creating VST2 plugins. 4 Rust

Table V shows the 10 most used libraries across repos-
itories that do not utilize C/C++. We observe that the
used libraries are not specific to audio signals process-
ing; for example, rand [56] is featured in 9 reposito-
ries (e.g., astra137/opus-parvulum), log [57] fea-
tured in 6 repositories (e.g., jcfischer/easylooper),
and simplelog [58], serde [59] alongside os [60] are fea-
tured in 5 repositories(e.g., greatest-ape/OctaSine,
t-sin/soyboy-sp.vst3). However, it is important to

note that sound processing libraries are also used, but less
than generic ones; examples of used sound processing libraries
include vst [61], rust-vst [62], fuzzball [63], easylooper [64],
dd-plugs [65], and rvst [66]).

VI. CODE QUALITY PRACTICES (RQ3)

A. Number of code smells, bugs, and vulnerabilities

We screened all 299 repositories via SonarQube’s code
quality analysis. SonarQube executes more than 6k rules
defined across more than 30 programming languages [67] on
the source code of a software project to generate issues be-
longing to three main families: (i) code smells (maintainability
domain), (ii) bugs (reliability domain), and (iii) vulnerabilities
(security domain) [68]. Table VI gives an overview of the
results of the code quality analysis on all 299 repositories.
SonarQube detected a relatively low number of issues (2,054
in total across 299 projects), with an average of 6.87 issues per
project, and minimum and maximum of 0 and 20, respectively.

TABLE VI: Code quality analysis with SonarQube.
Repositories rating

Issue type Count A B C D E

Code smells (maintainability) 1,981 279 16 3 0 1
Bugs (reliability) 72 256 12 12 6 13
Vulnerabilities (security) 1 298 0 0 1 0

According to SonarQube documentation, code smells are
“maintainability issue that makes your code confusing and
difficult to maintain” [68]. Code smells are the most re-
current type of issue (1,981 in total); nevertheless, 279
projects out of 299 are rated as A by SonarQube (e.g.,
surge-synthesizer/surge), indicating that their re-

mediation time is less than 5% of the time that has already
invested into the project [68]. The remaining 20 projects are
rated as B (remediation time between 6% and 10%, N=16),
C (remediation time between 11% and 20%, N=3), and E
(remediation time above 50%, N=1).

SonarQube supports more than 150 dif- ferent types of
bugs, ranging from unclosed input–output resources, classes
compared by name, etc. The number of bugs is considerably
lower than code smells, i.e., 72, still with a similar trend in
terms of ratings: most projects are rated as A (zero bugs,
N=256), e.g., p-hlp/CTAGDRC, while the remaining ones
are rated as B (at least one minor bug, N=12), C (at least one
major bug, N=2), D (at least one critical bug, N=6) and E (at
least one blocking bug, N=13).

SonarQube detected only one critical vulnerability in
joshua-maros/audiobench, leading to a D rating for

the security of the project. All other projects are rated as A.

B. Cyclomatic and cognitive complexity

Figure 9 shows the distribution of the cyclomatic [69]
and cognitive complexity [70] complexity metrics across the
projects, as reported by SonarQube.

Fig. 9: Cyclomatic and cognitive complexity, comment density.

The median cyclomatic complexity is 108. According to
Tom McCabe Jr [71], a cyclomatic complexity greater than 50
results in untestable code, and very high risk. However, there
are exceptions, for example, the azur1s/penare and
strikles/UQLRF-500 have a cyclomatic complexity of

5, meaning that their code implements simple procedures with
an overall low risk. We observed that the size of the repository
does not correlate with its cyclomatic complexity; for example,
the Penare plugin is the largest project from our dataset with
64,7857Kb, while UQLRF-500 has a size of 2,6839Kb (See
Section IV-B) and they have the same cyclomatic complexity.

https://www.github.com/ffAudio/Frequalizer
https://www.github.com/igorski/VSTSID
https://www.github.com/astra137/opus-parvulum
https://www.github.com/jcfischer/easylooper
https://www.github.com/greatest-ape/OctaSine
https://www.github.com/t-sin/soyboy-sp.vst3
https://www.github.com/surge-synthesizer/surge
https://www.github.com/p-hlp/CTAGDRC
https://www.github.com/joshua-maros/audiobench
https://www.github.com/azur1s/penare
https://www.github.com/strikles/UQLRF-500

The maximum value of cyclomatic complexity in our dataset
is 971 for MeijisIrlnd/Transfer).

The median cognitive complexity is 84. According to the
evaluation by Campbell [72], we can state that most of VST
plugins repositories on GitHub are relatively not difficult to
understand projects from a mathematical perspective. How-
ever, it is important to take into consideration that Sonar-
Qube computes cognitive complexity based on a mathematical
model [68], and not based on human understanding. the overall
score is computed according to the following basic rules: The
maximum value of cognitive complexity in our dataset is 987
for michael-truscott/DoomVst.

C. Comment lines density

Code comments are meant to facilitate developers to better
understand how the code works [73] and are considered key
artifacts in many software engineering tasks related to main-
tenance and program comprehension [74]. Figure 9 shows the
comment lines density across the mined repositories, computed
by SonarQube’s formula: CLD = CL/(NLOC +CL) ∗ 100
Where: CLD is the Comment Lines Density, CL is the
number of comment lines, and NLOC is the non-comment
lines of code in the repository. Overall, the median comment
density across the mined repositories is ≈ 9%, meaning
that most repositories have significantly fewer comment lines
than net LOCs. Previous work [75] highlighted the fact that
active open-source projects have on average a density of
19%. toasty-ghost/ASE_KM_Caverb has the high-
est comment line density, at 62.00%. Note that there is debate
on whether CLD is a good indicator of the quality of a
software project and there is no fixed threshold for it; however,
it can be seen as an objective indication about how much
“meta” information the contributors are embedding in the
code, typically positively impacting code comprehension [76].

D. Testing

To understand how VST plugin testing is conducted, we
investigate whether developers test their VST plugins by (i)
reviewing README files for mentions of testing practices,
and (ii) inspecting repository code for unit tests. Out of the 299
repositories analyzed, 85 (28.42%) report some form of man-
ual testing (e.g., JosephTLyons/Track-Notes-1),
while 214 (71.58%) did not report any testing methods in their
README files. Developers perform manual testing across var-
ious operating systems, including primarily Windows, Linux,
and macOS. However, this testing activity primarily focuses on
ensuring basic functionality, with no details provided about the
hardware configurations used during testing or relevant quality
attributes, such as performance, reliability, etc. Moreover, only
9 GitHub repositories (3%, e.g., DamRsn/NeuralNote
and surge-synthesizer/surge) contain the source
code of unit tests. Unit testing is the only software testing
method employed across the analyzed repositories, with no
evidence of specialized testing software, such as Selenium.

VII. DISCUSSION AND IMPLICATIONS

The GitHub ecosystem of VST plugins is young, and has
potential. This ecosystem is still emerging, with a median
repository age of approx2.5 years and the majority of them
developed by a single contributor. This observation is further
supported by the fact that many projects have few commits and
open/closed pull requests; additionally, the commit count (see
Section IV) shows that most commits are the initial commit
in the repository.

TABLE VII: Top-10 VST plugins (success stories).
VST project #Stars Year #Contributors

werman/noise-suppression-for-voice 3,847 2018 12
surge-synthesizer/surge 2,627 2018 68
asb2m10/dexed 2,512 2013 17
DISTRHO/Cardinal 1,577 2021 14
jatinchowdhury18/AnalogTapeModel 940 2019 8
michaelwillis/dragonfly-reverb 769 2017 1
monadgroup/axiom 667 2017 3
DamRsn/NeuralNote 551 2023 3
greatest-ape/OctaSine 527 2019 1
leomccormack/SPARTA 463 2018 6

Nevertheless, we also observe the presence of successful
projects within the VST plugins ecosystem, which are clear
outliers in terms of repository activities (e.g., number of
commits, and contributors), community engagement metrics
(e.g., stars, forks, watchers, and pull requests), and maintain-
ers’ efficiency. Table VII presents the top 10 VST projects
by GitHub stars; developers can use this as inspiration for
advancing their own projects, while musicians can rely on
these as stable tools in their creative workflows.
What does a successful VST project look like? The case of
Surge XT. Looking at the combination of metrics that we col-
lected to answer our RQs, the Surge XT project [77] emerges
as one of the most mature and successful VST projects in
our analysis. Surge XT is a free and open-source hybrid
synthesizer, originally developed as a commercial product at
Vember Audio [78]. In September 2018, a partially completed
version of Surge XT 1.6 was released on GitHub under GPL3.0
license [77]. Currently, the Surge XT plugin is maintained by
the surge-synthesizer [79] organization on GitHub, which is a
self-organized group of musicians, developers, testers, docu-
menters, volunteers, and open-source enthusiasts collaborating
on the Surge Synthesizer [80]. A key feature of the Surge
XT repository is its comprehensive and detailed README,
which includes: (i) an overview of the project; (ii) a direct
link to the binaries of the plugin; (ii) a Discord server that
serves as a direct line to developers and as a welcoming hub
for Surge plugin users to connect, share insights, report bugs,
and request features; (iii) a link to official documentation [81]
that serves as a user manual where musical and technical
aspects are covered, while also offering tutorials; (iv) a link
to a developer guide [82] describing a set of clear guidelines
to contribute to the project; and (v) a build guide on how to
build the project for different platforms locally, and remotely
via Azure pipelines [83].

Surge XT maintainers respond quickly to GitHub issues,
with a median response time of 2.12 hours (compared to 14.12
hours for other VST projects in our dataset) and a median

https://www.github.com/MeijisIrlnd/Transfer
https://www.github.com/michael-truscott/DoomVst
https://www.github.com/toasty-ghost/ASE_KM_Caverb
https://www.github.com/JosephTLyons/Track-Notes-1
https://www.github.com/DamRsn/NeuralNote
https://www.github.com/surge-synthesizer/surge
https://www.github.com/werman/noise-suppression-for-voice
https://www.github.com/surge-synthesizer/surge
https://www.github.com/asb2m10/dexed
https://www.github.com/DISTRHO/Cardinal
https://www.github.com/jatinchowdhury18/AnalogTapeModel
https://www.github.com/michaelwillis/dragonfly-reverb
https://www.github.com/monadgroup/axiom
https://www.github.com/DamRsn/NeuralNote
https://www.github.com/greatest-ape/OctaSine
https://www.github.com/leomccormack/SPARTA

closing time of 0 days. It is also one of the few repositories
that perform unit testing and include the source code of their
test cases in their GitHub repository (see Section VI-D).

By inspecting Surge XT’s documentation [81], we observe
that developers prioritize transparency and thorough docu-
mentation. They meticulously describe Surge XT’s overall
architecture (both textually and visually), from the synthesizer
engine to each functionality it offers (e.g., LFOs [84], and
oscillator algorithms [85]). Finally, developers are involved in
addressing plugin-related issues, and they promote community
interaction through a Discord server, enabling users to seek
support for the Surge XT plugin and engaging in discussions
with fellow users.

After inspecting Surge XT’s source code and documenta-
tion, and discussing our results with its development team on
Discord [86], we observe the following:

• The project provides a stable automated CI infrastructure
that includes GitHub workflows and Open Build Service
for (nightly) builds that support multiple distributions and
hardware architectures.

• Surget XT can also be built in headless mode, i.e.,
as a standalone executable of Surge XT without a UI,
facilitating debugging and testing activities.

• The Surge XT’s software architecture is explicitly docu-
mented [87] and made openly available to contributors,
where we identified six interesting traits: (i) There is a
clear separation of concerns, where third-party libraries
and individual functionalities are kept independent from
each other; (ii) The Surge XT core engine defining the
DSP and voice handling logic (see Section II) lives in its
own common module; (iii) A dedicated GUI module con-
tains all functionalities related to the GUI, with custom
UI widget classes, and various UI-related helpers; (iv) the
SurgeStorage module acts as a centralized global
entity containing a shared set of parameters available to
all modules at runtime. In a way, it acts as a blackboard
component [88]. (v) Surge XT makes an heavy use of
the adapter design pattern for masking the complexity
and platform-specific aspects of the used third-party li-
braries/modules; (vi) The DSP engine of Surge XT uses
dependency injection via CRTP [89] in order to avoid the
overhead of virtual methods calls at runtime.

Finally, during this research, it emerged that some of the
strongest indicators of Surge XT’s success are about the social
sustainability of the project, rather than its technical aspects.
Specifically, by quoting parts of a discussion we had with
members of the Surge XT community in January 2024: “[they]
had good people working enthusiastically on every part of it
[Surge XT] (coding, design, product ideas, testing, doc, build
infrastructure, sound design)”, “the starting point was super
strong but the owner of the starting point was open to change”,
“[they] instituted a mostly-don’t-be-jerks rule and that stuck,
[they] usually apologize when [they] break it, [they] say please
and thank you most of the time, and [they] aim to be respectful
of everyone’s contribution”, and “anyone is welcome to join

the community, as long as they observe [the previous rule]”.
VST plugin development has high entry barriers. Charac-
terization of the typical VST developer is challenging. Most
repositories are under 3 years old, often with contributors who
aren’t primarily software developers. Many projects have a
single commit and are infrequently updated, with an average
freshness of 1.8 years. However, contributors have a median
experience of 9 years on GitHub.

The most used programming languages for VST projects on
GitHub are C++ and C (see Section V-A). Their popularity can
be justified by three reasons. First, according to the TIOBE
index [90], C++ and C are the second and fourth most used
programming languages as of November 2024, respectively.
Second, C++ and C allow close-to-hardware performance,
which is crucial in real-time audio processing, where latency
is critical. Lastly, many essential frameworks and libraries,
such as the VST SDK [91], JUCE [35], RackAFX [92], ASIO
[93] (a Steinberg library for low-latency, high-fidelity audio
streaming), and Audio Toolkit [94] (an open-source collection
for audio processing), are written in C++. The higher popular-
ity of textual C-like languages for VST development results
in a higher entry barrier for novice programmers, especially
for creatives/musicians without a technical background [95].
Moreover, most repositories contain source code in multiple
programming languages (Section V-A), further increasing the
technical skills needed to contribute to these projects.

A good starting point for novice VST developers include:
(i) the inspection of repositories in Table VII with a focus
on the software design patterns, coding style, and tools used
in successful projects, (ii) the usage of template projects
to reduce the development time of their VST plugins (e.g.,
Pample Juce [96]), and (iii) the study of educational resources
on VST development in general (e.g., [97]).
Software Engineering practices for VST plugins are still
immature. With only 9 out of 299 repositories containing
test cases, we can safely conclude that testing practices in
the VST ecosystem are scarce (see Section VI). Moreover,
according to the cyclomatic complexity results, the source
code of most VST projects can be classified as untestable.
These are not the only metrics to be considered when assessing
the technical level of a software project, but they are already
a first indication of the immaturity of software engineering
practices for VST plugins. Moreover, despite the variety of
programming languages, libraries, and frameworks used in
VST plugin development on GitHub (see Sections IV and V),
standardized development guidelines are lacking, particularly
regarding best practices in terms of architecture, development,
and testing of VST plugins. Researchers can play a crucial role
in filling this gap by using this study’s results as a starting
point for conducting surveys targeting developers to gather
a better understanding of the current development practices
and needs of VST plugin developers, as well as developing
specialized tooling that can support creatives and musicians
develop their VST plugins (e.g., IDEs, interfaces, notations,
and domain-specific languages). These insights can guide the
design and validation of improved development tools for VST,

particularly in testing and assessing code quality in terms of
performance and reliability.

SonarQube, one of the most used code quality inspection
tools, detected very few issues in general. This result might
be an indication of two phenomena: either VST plugins are
perfect (this is doubtful given the number of open issues and
PRs) or SonarQube is not a good fit for this type of software.
We do not have the data to give a definitive answer on this,
but overall, this can be considered an indication of the need
for VST-specific tools for debugging and assessing the source
code of VST plugins. This is a promising line of research, both
for software engineering researchers and tool vendors.
Lack of highly-visible initiatives from major players. Based
on the collected data, we can speculate that many VST projects
are created out of passion for music production or personal
interest (e.g., mariusz96/blue-synthesiser). An-
other reason is that many VST plugins, though not demos
or templates, are developed primarily for personal learning or
to enhance programming skills in languages like C++, C, or
Python (see Figure 8). Overall, we found few projects tied
to larger initiatives from foundations or organizations, which
is a missed opportunity. Based on our data, the foundations
for a vibrant open-source ecosystem around VST technology
are present (see Table VII), but they require more support to
flourish. We urge major players in the music industry, such
as Roland, Korg, Moog, Yamaha, Arturia, and Behringer, to
invest in highly-visible initiatives like hackathons, financial
support, or in-kind contributions to open-source projects. This
would strengthen the community and drive progress toward
better virtual instruments, improved development tools for
VST plugins, and a more open, accessible future for music.

VIII. THREATS TO VALIDITY

Internal Validity. This study paid special attention to the
reproducibility of our results by following a systematic mining
process (see Section III). Overall the systematic process was
conducted following this steps: (i) store the all the data in
a CSV file; (ii) extract relevant fields from the CSV file,
containing the data of the 299 repositories to answer the
research questions; (iii) enhance the dataset with additional
data obtained via SonarQube, and issue-metrics; (iv) utilize
analysis methods for addressing each research question, com-
bining quantitative analysis with qualitative analysis. Finally,
we include a replication package [28] containing the scripts
for mining the repositories and analyzing them, SonarQube
analysis reports, and both raw and curated data, to facilitate
the replication of our study.
External Validity. While our study provides valuable insights
into the VST plugin development practices, it is important to
acknowledge that GitHub does not fully represent all develop-
ment practices that occur in this niche. There could be other
open-source communities (e.g., GitLab [98], Bitbucket [99])
and closed-source communities.
Construct Validity. The selection of metrics and data for
analysis is driven by our RQs, thus, we aim to ensure that the
data collected accurately reflects the repository characteristics,

community involvement and engagement, and development
practices. To this end, we used Cohen’s Kappa coefficient
to guarantee a high level of agreement in the data collection
and the application of the selection procedure. However, it
is important to acknowledge potential limitations: (i) mining
date 27th of September, 2023: mined data (e.g., the number of
commits), might be subject to change over time; (ii) bias: we
aimed to reduce as much as possible the degree of bias, by
checking the level of agreement between the authors, but this
does not guarantee its complete removal; (iii) since we are not
the contributors of the analysed repositories, we do not have
full access to the decision-making processes behind them.
Conclusion Validity. We mitigate threats to the conclusion
validity by (i) including a replication package to allow third–
party researchers to verify and check the obtained results;
(ii) documenting our mining process to ensure the integrity
and replicability of our dataset; (iii) employing quantitative
and qualitative analysis methods to strengthen the reliability of
our findings. However, it is important to acknowledge potential
risks: (i) given the exploratory nature of this study, we did
not perform statistical tests within the data; (ii) bias in the
definition of the inclusion and exclusion protocol.

IX. CONCLUSION AND FUTURE WORK

This paper explores the development practices of open-
source VST plugins on GitHub. For this goal, we mined
≈1.5k GitHub repositories. After applying a rigorous selection
procedure, we created a dataset of 299 GitHub repositories
containing open-source VST projects. Then, we analyzed all
repositories both quantitatively and qualitatively to understand
the development practices of the VST plugins development
community on GitHub. Based on the experimental data, we
conclude that: (i) most VST projects are VST effects (VSTfx)
and are maintained by a single contributor on GitHub, with
the majority of them created in the last 5 years; (ii) most
VST projects are developed using C-like languages, the JUCE
framework, and several non-VST-specific libraries; (iii) Sonar-
Qube detected primarily code smells in VST projects, few
bugs, and only one vulnerability, highlighting the need for
domain-specific code analysis tools for VST development;
(iv) the detected cyclomatic complexity of the analysed
projects indicates a high risk in terms of their testability;
(v) testing practices are still immature, with only 9 repositories
containing unit tests.

As next steps, in addition to investigating a selection of
the future research directions discussed in Section VII, we
are evaluating the application of qualitative research methods
to obtain additional and deeper insights into the VST plugin
development community and its practices and needs.

ACKNOWLEDGMENTS

We are grateful to the Surge XT developer community,
especially baconpaul, EvilDragon, and Andreya for
their valuable feedback on the initial draft of this article and
their insights into the Surge XT community dynamics.

https://www.github.com/mariusz96/blue-synthesiser

REFERENCES

[1] C. Music, “Early DAWs: the software that
changed music production forever,” MusicRadar, Feb.
2020. [Online]. Available: https://www.musicradar.com/news/
early-daws-the-software-that-changed-music-production-forever

[2] A. Reuter, “Who let the daws out? the digital in a new generation of the
digital audio workstation,” Popular Music and Society, vol. 45, no. 2,
pp. 113–128, 2022.

[3] “DAW Software | Equipboard,” Oct. 2024, [Online; accessed 17.
Oct. 2024]. [Online]. Available: https://equipboard.com/c/daw?sort=
most-used

[4] “Virtual studio technology definition.” [Online]. Available: https:
//en.wikipedia.org/wiki/Virtual Studio Technology

[5] “VST - VST 3 Developer Portal,” Jul. 2024, [Online; accessed 17.
Oct. 2024]. [Online]. Available: https://steinbergmedia.github.io/vst3
dev portal

[6] W. Pirkle, Designing audio effect plugins in C++: for AAX, AU, and
VST3 with DSP theory. Routledge, 2019.

[7] “Audio Plug-ins Software Application Market - Global
Industry Analysis and Forecast (2024 -2030),” Aug.
2024, [Online; accessed 17. Oct. 2024]. [Online].
Available: https://www.maximizemarketresearch.com/market-report/
global-audio-plug-ins-software-application-market/100413

[8] Roland Corporation, “Roland - Roland Cloud,” Oct. 2024, [Online;
accessed 17. Oct. 2024]. [Online]. Available: https://www.roland.com/
global/categories/roland cloud

[9] “JUCE,” Oct. 2024, [Online; accessed 17. Oct. 2024]. [Online].
Available: https://github.com/juce-framework/JUCE

[10] “Made With JUCE - JUCE,” Apr. 2024, [Online; accessed 17. Oct.
2024]. [Online]. Available: https://juce.com/made-with-juce

[11] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
2016.

[12] “Digital audio workstation definition.” [Online]. Available: https:
//en.wikipedia.org/wiki/Digital audio workstation

[13] “Clap official page,” 2025. [Online]. Available: https://cleveraudio.org
[14] “Aax sdk official page,” 2025. [Online]. Available: https://developer.

avid.com/aax
[15] “Lv2 official page,” 2025. [Online]. Available: https://lv2plug.in
[16] “Ableton Live,” Oct. 2024, [Online; accessed 24. Oct. 2024]. [Online].

Available: https://www.ableton.com/en/live
[17] D. M. Huber, The MIDI manual: a practical guide to MIDI in the project

studio. Routledge, 2012.
[18] C. Cannam, L. A. Figueira, and M. D. Plumbley, “Sound software:

Towards software reuse in audio and music research,” in 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2012, pp. 2745–2748.

[19] I. Damnjanovic, L. A. Figueira, C. Cannam, and M. D. Plumbley,
“soundsoftware. ac. uk survey report,” 2011, [Online; accessed 27. Jan.
2025]. [Online]. Available: http://code.soundsoftware.ac.uk/documents/
17

[20] G. Burlet and A. Hindle, “An empirical study of end-user programmers
in the computer music community,” in Proceedings of the 12th Working
Conference on Mining Software Repositories, ser. MSR ’15. IEEE
Press, 2015, p. 292–302.

[21] A. Islam, K. Eng, and A. Hindle, “Opening the valve on pure-data:
Usage patterns and programming practices of a data-flow based visual
programming language,” in Proceedings of the 21st International Con-
ference on Mining Software Repositories, ser. MSR ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 492–497.

[22] S. Stickland, R. Athauda, and N. Scott, “Design and evaluation of a
scalable real-time online digital audio workstation collaboration frame-
work,” Journal of the Audio Engineering Society, vol. 69, no. 6, pp.
410–431, 2021.

[23] I. J. Clester and J. Freeman, “Composing with generative systems in
the digital audio workstation,” in Joint Proceedings of the ACM IUI
Workshops, 2023.

[24] M. Choetkiertikul, A. Hoonlor, C. Ragkhitwetsagul, S. Pongpaichet,
T. Sunetnanta, T. Settewong, V. Jiravatvanich, and U. Kaewpichai, “Min-
ing the characteristics of jupyter notebooks in data science projects,”
2023.

[25] I. Malavolta, G. A. Lewis, B. Schmerl, P. Lago, and D. Garlan,
“Mining guidelines for architecting robotics software,” Journal of
Systems and Software, vol. 178, p. 110969, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221000662

[26] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering, ser. Computer
Science. Springer, 2012.

[27] F. Shull, J. Singer, and D. I. Sjøberg, Guide to advanced empirical
software engineering. Springer, 2007.

[28] I. M. Bogdan Andrei, Mauricio Verano Merino, “Replication package
of this study,” 2025. [Online]. Available: https://doi.org/10.5281/zenodo.
14810650

[29] V. R. Basili and H. D. Rombach, “The tame project: Towards
improvement-oriented software environments,” IEEE Transactions on
software engineering, vol. 14, no. 6, pp. 758–773, 1988.

[30] “Preliminary search on GitHub,” Nov. 2024, [Online; accessed 8. Nov.
2024]. [Online]. Available: https://github.com/search?q=vst+plugin&s=
stars&o=desc&type=repositories

[31] “Sonarqube official website.” [Online]. Available: https://www.
sonarsource.com/products/sonarqube/

[32] I. Malavolta, T. A. Ghaleb, I. David, J. van Rooijen, and M. Stoelinga,
“Engineering mobile apps for disaster management - the case of
covid-19 apps in the google play store,” IEEE Software, vol. 39,
no. 3, pp. 31–42, November 2021. [Online]. Available: http://www.
ivanomalavolta.com/files/papers/IEEE Software COVID 2021.pdf

[33] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “Some sonarqube issues
have a significant but small effect on faults and changes. a large-scale
empirical study,” Journal of Systems and Software, vol. 170, p. 110750,
2020.

[34] D. Spencer, Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[35] JUCE, “The official documentation of juce framework.” [Online].
Available: https://juce.com/

[36] pongasoft organization, “pongasoft organization github profile.”
[Online]. Available: https://github.com/pongasoft

[37] wolf-plugins organization, “wolf-plugins organization github profile.”
[Online]. Available: https://github.com/wolf-plugins

[38] G. O. System, “Gpl-3.0,” https://www.gnu.org/licenses/gpl-3.0.html,
2023, [Online, accessed 24 September 2024].

[39] MIT, “Mit license,” https://en.wikipedia.org/wiki/MIT License, 2009,
[Online, accessed 24 September 2024].

[40] GitHub, “Licensing a repository official documen-
tation.” [Online]. Available: https://docs.github.com/en/
repositories/managing-your-repositorys-settings-and-features/
customizing-your-repository/licensing-a-repository

[41] J. Russell and M. Laan, “Inno setup,” https://jrsoftware.org/isinfo.php,
[Online, accessed 28 October 2024].

[42] “Dpf framework github repository.” [Online]. Available: https://github.
com/DISTRHO/DPF

[43] JUCE, “Juce framework.” https://github.com/juce-framework/JUCE,
[Online, accessed 28 October 2024].

[44] DISTRHO, “Dpf - distrho plugin framework,” https://github.com/
DISTRHO/DPF, [Online, accessed 28 October 2024].

[45] Steinberg, “Vst3 - sdk,” https://github.com/steinbergmedia/vst3sdk, [On-
line, accessed 28 October 2024].

[46] R. van der Helm, “Nih-plug,” https://github.com/robbert-vdh/nih-plug,
[Online, accessed 28 October 2024].

[47] pongasoft, “Jamba,” https://github.com/pongasoft/jamba, [Online, ac-
cessed 28 October 2024].

[48] RustAudio, “Vst-rs,” https://github.com/RustAudio/vst-rs, [Online, ac-
cessed 28 October 2024].

[49] O. Larkin, “Wdl-ol,” https://github.com/olilarkin/wdl-ol, [Online, ac-
cessed 28 October 2024].

[50] iPlug, “iplug,” https://github.com/iPlug2/iPlug2, [Online, accessed 28
October 2024].

[51] R. Walsh, “Cabbage,” https://github.com/rorywalsh/cabbage, [Online,
accessed 28 October 2024].

[52] IBM, “Header files definition,” https://www.ibm.com/docs/en/aix/7.2?
topic=reference-header-files.

[53] ——, “Compiled library files definition,” https://www.ibm.com/docs/en/
xl-c-and-cpp-linux/16.1.0?topic=library-compiling-linking.

[54] Z. Djalalian, “Preprocessor for c++ class implementation,” Master’s
thesis, Concordia University, 2000, unpublished. [Online]. Available:
https://spectrum.library.concordia.ca/id/eprint/1056/

https://www.musicradar.com/news/early-daws-the-software-that-changed-music-production-forever
https://www.musicradar.com/news/early-daws-the-software-that-changed-music-production-forever
https://equipboard.com/c/daw?sort=most-used
https://equipboard.com/c/daw?sort=most-used
https://en.wikipedia.org/wiki/Virtual_Studio_Technology
https://en.wikipedia.org/wiki/Virtual_Studio_Technology
https://steinbergmedia.github.io/vst3_dev_portal
https://steinbergmedia.github.io/vst3_dev_portal
https://www.maximizemarketresearch.com/market-report/global-audio-plug-ins-software-application-market/100413
https://www.maximizemarketresearch.com/market-report/global-audio-plug-ins-software-application-market/100413
https://www.roland.com/global/categories/roland_cloud
https://www.roland.com/global/categories/roland_cloud
https://github.com/juce-framework/JUCE
https://juce.com/made-with-juce
https://en.wikipedia.org/wiki/Digital_audio_workstation
https://en.wikipedia.org/wiki/Digital_audio_workstation
https://cleveraudio.org
https://developer.avid.com/aax
https://developer.avid.com/aax
https://lv2plug.in
https://www.ableton.com/en/live
http://code.soundsoftware.ac.uk/documents/17
http://code.soundsoftware.ac.uk/documents/17
https://www.sciencedirect.com/science/article/pii/S0164121221000662
https://doi.org/10.5281/zenodo.14810650
https://doi.org/10.5281/zenodo.14810650
https://github.com/search?q=vst+plugin&s=stars&o=desc&type=repositories
https://github.com/search?q=vst+plugin&s=stars&o=desc&type=repositories
https://www.sonarsource.com/products/sonarqube/
https://www.sonarsource.com/products/sonarqube/
http://www.ivanomalavolta.com/files/papers/IEEE_Software_COVID_2021.pdf
http://www.ivanomalavolta.com/files/papers/IEEE_Software_COVID_2021.pdf
https://juce.com/
https://github.com/pongasoft
https://github.com/wolf-plugins
https://www.gnu.org/licenses/gpl-3.0.html
https://en.wikipedia.org/wiki/MIT_License
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://jrsoftware.org/isinfo.php
https://github.com/DISTRHO/DPF
https://github.com/DISTRHO/DPF
https://github.com/juce-framework/JUCE
https://github.com/DISTRHO/DPF
https://github.com/DISTRHO/DPF
https://github.com/steinbergmedia/vst3sdk
https://github.com/robbert-vdh/nih-plug
https://github.com/pongasoft/jamba
https://github.com/RustAudio/vst-rs
https://github.com/olilarkin/wdl-ol
https://github.com/iPlug2/iPlug2
https://github.com/rorywalsh/cabbage
https://www.ibm.com/docs/en/aix/7.2?topic=reference-header-files
https://www.ibm.com/docs/en/aix/7.2?topic=reference-header-files
https://www.ibm.com/docs/en/xl-c-and-cpp-linux/16.1.0?topic=library-compiling-linking
https://www.ibm.com/docs/en/xl-c-and-cpp-linux/16.1.0?topic=library-compiling-linking
https://spectrum.library.concordia.ca/id/eprint/1056/

[55] Y. Yu, H. Dayani-Fard, and J. Mylopoulos, “Removing false code
dependencies to speedup software build processes.” 01 2003, pp. 343–
352.

[56] Rust, “The official documentation of ”rand” library.” [Online].
Available: https://docs.rs/rand/latest/rand/

[57] ——, “The official documentation of ”log” library.” [Online]. Available:
https://docs.rs/log/latest/log/

[58] ——, “The official documentation of ”simplelog” library.” [Online].
Available: https://docs.rs/simplelog/latest/simplelog/

[59] S. RS, “Serde rs,” https://github.com/serde-rs/serde, [Online, accessed
24 September 2024].

[60] Python, “The official documentation of ”os” library.” [Online].
Available: https://docs.python.org/3/library/os.html

[61] Rust, “The official documentation of ”vst” library.” [Online]. Available:
https://docs.rs/vst/latest/vst/

[62] R. organization, “”vst-rs” library official github repository,” 2017.
[Online]. Available: https://github.com/RustAudio/vst-rs

[63] fake-industries organization, “”fuzzball” vst plugin official
github repository,” 2020. [Online]. Available: https://github.com/
fake-industries/fuzzball

[64] J.-C. Fischer, “”easylooper” vst plugin official github repository,” 2018.
[Online]. Available: https://github.com/jcfischer/easylooper

[65] monomadic, “”dd-plugs” vst plugin official github repository,” 2017.
[Online]. Available: https://github.com/monomadic/dd-plugs

[66] E. Stankov, “”rvst” vst plugin official github repository,” 2018. [Online].
Available: https://github.com/EmilianStankov/rvst

[67] Nov. 2024, [Online; accessed 4. Nov. 2024]. [Online]. Available:
https://rules.sonarsource.com

[68] “Sonarqube metrics definition.” [Online]. Available: https://docs.
sonarsource.com/sonarqube/latest/user-guide/metric-definitions/

[69] “Cyclomatic complexity definition.” [Online]. Available: https://en.
wikipedia.org/wiki/Cyclomatic complexity

[70] “Cognitive complexity definition.” [Online]. Available: https://en.
wikipedia.org/wiki/Cognitive complexity

[71] T. M. Jr., “Software quality metrics to identify risk,” 2008.
[Online]. Available: https://web.archive.org/web/20220329072759/http:
//www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt

[72] G. A. Campbell, “Cognitive complexity.” [Online]. Available: https:
//www.sonarsource.com/docs/CognitiveComplexity.pdf

[73] J. K. Ousterhout, A philosophy of software design. Yaknyam Press Palo
Alto, CA, USA, 2018, vol. 98.

[74] P. Rani, A. Blasi, N. Stulova, S. Panichella, A. Gorla, and O. Nierstrasz,
“A decade of code comment quality assessment: A systematic literature
review,” Journal of Systems and Software, vol. 195, p. 111515, 2023.

[75] O. Arafat and D. Riehle, “The comment density of open source software
code,” in 2009 31st International Conference on Software Engineering-
Companion Volume. IEEE, 2009, pp. 195–198.

[76] L. Pascarella and A. Bacchelli, “Classifying code comments in java
open-source software systems,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). IEEE, 2017, pp.
227–237.

[77] surge-synthesizer organization, “”surge” vst plugin official
github repository,” 2018. [Online]. Available: https://github.com/
surge-synthesizer/surge

[78] V. Audio, “Vember audio official website,” https://vemberaudio.se/.
[79] “Surge synthesizer organization official website.” [Online]. Available:

https://surge-synth-team.org/
[80] S. Williams, “Baconpaul from the Surge Synthesizer Team - JUCE,”

JUCE, Jun. 2024. [Online]. Available: https://juce.com/made-with-juce/
baconpaul-from-the-surge-synthesizer-team

[81] “Surge xt official documentation.” [Online]. Available: https:
//surge-synthesizer.github.io/manual-xt/

[82] “Surge official developer guide.” [Online]. Available: https://github.
com/surge-synthesizer/surge/blob/main/doc/Developer%20Guide.md

[83] “Azure pipelines official documentation.” [Online].
Available: https://learn.microsoft.com/en-us/azure/devops/pipelines/
get-started/what-is-azure-pipelines?view=azure-devops

[84] Wikipedia, “Low frequency oscillation wikipedia page,” https://en.
wikipedia.org/wiki/Low-frequency oscillation.

[85] ——, “Electronic oscillator wikipedia page,” https://en.wikipedia.org/
wiki/Electronic oscillator.

[86] “Discord - Surge Synth Team,” Jan. 2025, [Online; accessed
3. Feb. 2025]. [Online]. Available: https://discord.com/channels/
744319641211633774/744324663383031821

[87] “Surge Architecture,” Feb. 2025, [Online; accessed 3. Feb. 2025].
[Online]. Available: https://github.com/surge-synthesizer/surge/blob/
main/doc/Surge%20Architecture.md

[88] F. Buschmann, R. Meunier, H. Rohnert, P. Sornmerlad, and M. Stal,
Pattern-oriented software architecture: a system of patterns. Volume 1.
Wiley, 2001.

[89] D. Abrahams and A. Gurtovoy, C++ template metaprogramming: con-
cepts, tools, and techniques from Boost and beyond. Pearson Education,
2004.

[90] “Tiobe index - november 2023.” [Online]. Available: https://www.tiobe.
com/tiobe-index/

[91] Steinberg, “The official documentation of vst sdk framework.” [Online].
Available: https://www.steinberg.net/developers/

[92] W. Pirkle, “The official documentation of rackafx framework.” [Online].
Available: https://www.willpirkle.com/rackafx/

[93] A. for all, “The official documentation of asio library.” [Online].
Available: https://asio4all.org/

[94] A. Toolkit, “The official documentation of audio toolkit library set.”
[Online]. Available: https://www.audio-tk.com/

[95] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user
programming systems,” in 2004 IEEE Symposium on Visual Languages
- Human Centric Computing, 2004, pp. 199–206.

[96] “pamplejuce,” Nov. 2024, [Online; accessed 8. Nov. 2024]. [Online].
Available: https://github.com/sudara/pamplejuce

[97] “Audio-Plugin-Development-Resources,” Oct. 2024, [Online; accessed
18. Oct. 2024]. [Online]. Available: https://github.com/jareddrayton/
Audio-Plugin-Development-Resources

[98] “Gitlab definition.” [Online]. Available: https://about.gitlab.com/
[99] “Bitbucket definition.” [Online]. Available: https://bitbucket.org/product

https://docs.rs/rand/latest/rand/
https://docs.rs/log/latest/log/
https://docs.rs/simplelog/latest/simplelog/
https://github.com/serde-rs/serde
https://docs.python.org/3/library/os.html
https://docs.rs/vst/latest/vst/
https://github.com/RustAudio/vst-rs
https://github.com/fake-industries/fuzzball
https://github.com/fake-industries/fuzzball
https://github.com/jcfischer/easylooper
https://github.com/monomadic/dd-plugs
https://github.com/EmilianStankov/rvst
https://rules.sonarsource.com
https://docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/
https://docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Cognitive_complexity
https://en.wikipedia.org/wiki/Cognitive_complexity
https://web.archive.org/web/20220329072759/http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt
https://web.archive.org/web/20220329072759/http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt
https://www.sonarsource.com/docs/CognitiveComplexity.pdf
https://www.sonarsource.com/docs/CognitiveComplexity.pdf
https://github.com/surge-synthesizer/surge
https://github.com/surge-synthesizer/surge
https://vemberaudio.se/
https://surge-synth-team.org/
https://juce.com/made-with-juce/baconpaul-from-the-surge-synthesizer-team
https://juce.com/made-with-juce/baconpaul-from-the-surge-synthesizer-team
https://surge-synthesizer.github.io/manual-xt/
https://surge-synthesizer.github.io/manual-xt/
https://github.com/surge-synthesizer/surge/blob/main/doc/Developer%20Guide.md
https://github.com/surge-synthesizer/surge/blob/main/doc/Developer%20Guide.md
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://en.wikipedia.org/wiki/Low-frequency_oscillation
https://en.wikipedia.org/wiki/Low-frequency_oscillation
https://en.wikipedia.org/wiki/Electronic_oscillator
https://en.wikipedia.org/wiki/Electronic_oscillator
https://discord.com/channels/744319641211633774/744324663383031821
https://discord.com/channels/744319641211633774/744324663383031821
https://github.com/surge-synthesizer/surge/blob/main/doc/Surge%20Architecture.md
https://github.com/surge-synthesizer/surge/blob/main/doc/Surge%20Architecture.md
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.steinberg.net/developers/
https://www.willpirkle.com/rackafx/
https://asio4all.org/
https://www.audio-tk.com/
https://github.com/sudara/pamplejuce
https://github.com/jareddrayton/Audio-Plugin-Development-Resources
https://github.com/jareddrayton/Audio-Plugin-Development-Resources
https://about.gitlab.com/
https://bitbucket.org/product

	Introduction
	Background and related work
	Virtual Studio Technology (VST)
	Related work

	Study Design
	Goal and Research Questions
	Initial Search
	Systematic Selection
	Data extraction
	Data analysis

	Main VST Project Characteristics (RQ1)
	VST category and used GitHub topics
	Repository Characteristics
	Repository Activity
	Contributors, ownership, and licensing

	Most used technologies (RQ2)
	Programming Languages
	Frameworks
	Libraries

	Code Quality Practices (RQ3)
	Number of code smells, bugs, and vulnerabilities
	Cyclomatic and cognitive complexity
	Comment lines density
	Testing

	Discussion and Implications
	Threats To Validity
	Conclusion and future work
	References

