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Abstract

Generative Al tools such as ChatGPT, GitHub Copilot, and Gem-
ini have rapidly influenced programming education by providing
instant code generation and problem-solving support. This study
investigates the potential impact of these tools on an introductory
Python programming course by conducting an observational analy-
sis of two cohorts in 2022 and 2024. In total, we analyzed a corpus of
1,614 submissions across three assignments. To study the possible
influence of generative Al tools, we created baseline solutions for
each assignment using ChatGPT and Gemini. We then analyzed
code similarity between the baseline solutions and the students’
submissions, as well as syntax errors across both cohorts. For As-
signment 2, peer-to-peer duplication decreased by 60.11% between
2022 and 2024. Among the 2024 submissions, we observe substan-
tial similarity to fixed Al baselines, depending on task complexity.
Although this pattern is consistent with the convergence toward Al-
generated solutions, we lack direct measures of tool use and make
no causal claims. The number of syntax errors did not differ signifi-
cantly between the two cohorts. These findings suggest a shift in
programming education, from direct student copying toward solu-
tions that increasingly resemble Al-generated outputs. This shift
emphasizes the need for updated assessments and policies to pro-
mote fairness, integrity, and meaningful learning in introductory
programming courses.
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1 Introduction

The use of generative artificial intelligence (GenAlI) tools such as
ChatGPT, GitHub Copilot, and Google Gemini is transforming mod-
ern life. In educational settings, these tools are changing how stu-
dents approach learning. For instance, Qadir [31] discusses how
ChatGPT can provide instant feedback and personalized support,
while raising concerns about fairness and integrity in engineer-
ing education. Particularly in introductory programming courses,
these tools can offer immediate support with exercises and problem-
solving assignments. Their use has become increasingly common
among university students [34], alongside the growing popularity
and easy access to Al-powered code editors such as Cursor and
Windsurf [3, 14].

Beyond supporting coding tasks, generative Al has the poten-
tial to create personalized and adaptive learning experiences by
tailoring content to individual learners, taking into account their
needs, habits, and preferences. At the same time, its use in ed-
ucation raises critical concerns regarding bias, data privacy, and
accountability [26]. The rise of generative Al tools such as ChatGPT
raises questions about the sustainability of traditional assessment
methods. Generative Al tools have altered how students approach
education and learning. Recent large-scale surveys confirm its wide-
spread adoption in higher education. Respondents report frequent
use for tasks such as information retrieval and paraphrasing, while
also emphasizing ethical concerns and risks of academic dishon-
esty [45].

Introductory programming courses are recognized as challeng-
ing for many students, who often struggle with misconceptions
related to syntax, concepts, and problem-solving strategies [32].
Despite these difficulties, such courses play a foundational role in
developing an understanding of how computers and software work,
while simultaneously training cognitive skills such as logical and
abstract thinking and reasoning [25]. In these courses, practical
programming exercises are key learning activities and are often
used as formative or summative assessment mechanisms [25]. Re-
cent research highlights that Al tools can improve student learning
by supporting study habits, time management, and feedback pro-
cesses, while also contributing to better academic outcomes [42].
However, these benefits are accompanied by challenges such as
over-reliance and difficulties in integrating Al into traditional teach-
ing approaches, suggesting that Al should complement rather than
replace conventional strategies [42]. Meanwhile, teachers and exam-
ination boards face the growing challenge of detecting Al-assisted
cheating, which threatens fairness, integrity, and the credibility of
academic assessment. Recent work highlights not only the risks
posed by AI misuse but also emphasizes the need for extended
research on detection strategies, ethical education, and institutional
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responses [44]. Although recent work discusses the risks and op-
portunities of generative Al tools in higher education [6], there is
little empirical evidence comparing two groups of students before
and after the widespread availability of generative Al tools under
similar conditions.

To achieve this goal, this paper investigates the impact of gen-
erative Al tools in computer programming courses, focusing on
individual assignments, through an observational comparison. We
analyze two groups of students from a Dutch university: the 2022
class, with limited access to GenAl tools, and the 2024 class, with
widespread access to GenAlI tools. Both groups completed the same
assignments under the same conditions, eliminating variation due to
course design. Our analysis focuses on the similarity of student code
to Al-generated solutions, the syntax correctness of submissions,
and the similarity between student submissions using JPlag [38].
The main contributions of this paper can be summarized as follows:

e Data-driven comparison of student behavior and perfor-
mance across two different year cohorts, focusing on student-
to-student code similarity (JPlag) and syntax correctness, to
assess potential shifts in programming practices with the
rise of generative AL

o Analysis of student similarity to fixed Al-generated baselines
using two popular LLMs (ChatGPT and Gemini). This pro-
vides a reference for quantifying the similarity to generative
Al outputs.

e Observational analysis of distributional shifts in code sim-
ilarity across student-to-student and student-to-Al, along
with syntax error rates, enabling a comparative view of the
2022 and 2024 cohorts.

e Discussion of implications for assessment design and aca-
demic integrity in introductory programming courses in
light of the availability of GenAlL

2 Related Work
2.1 Generative Al in Education

The adoption of generative Al tools in higher education has accel-
erated rapidly. Simaremare et al. [34] surveyed 1,157 students in
Indonesia and found that while 70% of the respondents were aware
of generative Al nearly all had used such tools to support their
learning, with 88.8% reporting use for source code generation. In
addition, a large-scale cross-cultural survey confirms widespread
awareness and adoption of generative Al in higher education world-
wide, while also highlighting variations in perceived benefits and
ethical concerns across cultural contexts [45]. Our study extends
this line of work by analyzing students’ assignment submissions,
offering evidence of how generative Al availability might influence
similarity to Al-generated baselines.

However, policy responses lag behind adoption. In 2023, UN-
ESCO [40] reported that fewer than 10% of higher education insti-
tutions had formal Al policies, although more recent data indicate
that this figure has increased to 19%, with another 42% develop-
ing policies as of 2025 [41]. A detailed analysis of the top 50 U.S.
universities shows that institutions are now responding quickly,
with 94% of faculty guidelines emphasizing course-specific rules,
consistently highlighting academic integrity and privacy concerns,
while also calling for flexible, stakeholder-specific approaches to
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balance generative Al opportunities and risks [2]. Our findings pro-
vide empirical evidence showing how the availability of generative
Al coincides with shifting patterns of code similarity in student sub-
missions. This understanding contributes to the broader discussion
of academic integrity and can guide the design of fair and reliable
assessments.

In parallel, generative Al is reshaping assessment practices. Sol
et al. [36] noted that the widespread availability of Al challenges
traditional forms of evaluation, raising concerns about academic
integrity while also creating opportunities for personalized assess-
ment, automated feedback, and Al-driven collaboration. To guide
sustainable integration, they propose the Al Assessment Scale. Sim-
ilarly, Smolansky et al. [35] surveyed students and educators and
found agreement on which assessments are the most affected, with
educators highlighting the need to adapt tasks to assume Al use
by students and to foster critical thinking and authentic applica-
tions. Our study complements these perspectives by empirically
demonstrating how assessment outcomes, specifically code simi-
larity and syntax correctness, shift across cohorts with differing
access to generative Al tools. These findings help identify which
assignment types remain less affected by Al use and where redesign
is necessary to preserve fairness and learning value.

2.2 Generative Al in Programming/CS/AI

Introductory programming courses have long been recognized as
challenging, with persistent difficulties related to problem-solving
skills, mathematical knowledge, abstraction, debugging, and the
lack of personalized feedback [25]. These baseline issues form an
essential backdrop for evaluating how generative Al tools may
alter learning trajectories and reshape the challenges traditionally
encountered in programming education. To understand the scope
of AI's influence, we track whether long-standing difficulties such
as syntax errors have shifted, observing if these challenges persist
despite the widespread availability of GenAlI tools.

Building on this context, recent surveys highlight that tools
such as ChatGPT, Gemini, and GitHub Copilot are reshaping pro-
gramming education by offering educational support while simul-
taneously posing new risks to academic integrity [5]. Our study
investigates this duality through code similarity analysis, syntax
parsing, and performance metrics, aiming to better understand the
influence of generative Al on student work.

One of the most notable challenges for institutions in this area is
the difficulty in detecting GenAl-generated code. Pham et al. [28]
introduce MageCode, a method that combines semantic features
extracted from pre-trained models such as CodeT5+ with metric-
based techniques. Evaluated on a dataset of more than 45,000 LLM-
generated code samples across Python, Java, and C++, it achieved up
to 98.46% accuracy with less than 1% false positives, outperforming
existing baselines and highlighting promising directions for source
code detection. Complementary approaches have also been pro-
posed, such as the use of Al-generated pseudo-submissions, which
make generative output transparent and comparable to student
work, thus improving detection accuracy [4]. Although these meth-
ods propose possible detection approaches, our study contributes a
classroom perspective by using JPlag [38] and fixed Al baselines to
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compare similarity between human-generated and Al-generated
code in real student submissions.

Beyond the classroom, adoption studies in software engineering
illustrate a similar duality. A survey conducted on Stack Overflow
reports that over 70% of developers already use or intend to use tools
such as ChatGPT and GitHub Copilot, citing productivity gains,
testing support, and improved code comprehension [15]. However,
concerns remain about code quality, security, licensing, and the
impact on junior developer roles [15]. These findings reinforce the
broader implications of generative Al for programming practice,
suggesting that while technology can provide significant support,
it also raises unresolved challenges in detection, integrity, and pro-
fessional development. Our work situates these adoption patterns
within the educational setting, showing how student practices in
introductory programming may anticipate the opportunities and
challenges later faced in a professional environment.

3 Study Design

3.1 Goals and Research Questions

The goal of this study is to analyze the potential influence of gen-
erative Al tools in an introductory programming course, aiming to
understand shifting student behaviors and their implications for
performance and academic integrity (e.g., plagiarism). We adopt
an observational stance, without inferring causality or direct tool
usage, and focus on three signals derived from the collected data:
(i) Code similarity among students’ submissions; (ii) Resemblance to
Al-generated baseline solutions; (iii) Syntactic correctness. To guide
this analysis, we define the following three research questions.

RQ1: For each assignment, how did the distribution of code
similarity among student submissions change between 2022
and 2024?

o Null hypothesis (Hy ): For each assignment, the distribution
of code similarity scores is the same in 2022 and 2024.

o Alternative hypothesis (Hy ): For each assignment, the distri-
bution of code similarity scores differs between 2022 and
2024.

While RQ1 compares peer-to-peer patterns across both cohorts,
the following analysis of Al resemblance is restricted to the 2024
cohort. We exclude 2022 from this specific analysis because the
course took place in September 2022, prior to the initial release of
ChatGPT (November 2022).

RQ2: Across assignments in 2024, how do students’ maxi-
mum similarity scores to Al-generated answers differ?

o Null hypothesis (Hp): In 2024, for the same students, the
distribution of the maximum similarity scores does not differ
between assignments (A1, A2, A3).

o Alternative hypothesis (H; ): For the same students, at least
one assignment has a different similarity score distribution
compared to the others in 2024.

RQ3: For each assignment, how do the proportions of syn-
tax failures (AST errors) among student submissions compare
between 2022 and 2024?

o Null hypothesis (Hp ): For each assignment, the proportion of
syntax failures is the same in 2022 and 2024.
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o Alternative hypothesis (H; ): For each assignment, the propor-
tion of syntax failures differs between 2022 and 2024.

3.2 Methodology

An observational study was conducted comparing two independent
student groups enrolled in the same Introduction to Python course at
aDutch university: class 2022 (presumably low exposure to Al tools)
and class 2024 (presumably high exposure to Al tools). Both groups
completed the same three assignments under the same instructor
and course design, reducing variation due to possible instructional
differences. This observational analysis combines the use of JPlag
to obtain the distribution of similarity among student submissions,
the resemblance to fixed Al-generated solutions from two of the
most popular LLMs at the time (ChatGPT and Gemini), and syntax
validation. Figure 1 provides an overview of the methodology.

3.3 Dataset

We use data from an introductory Python programming course
taught to first-year students in an Al Bachelor’s program. In the
course, students’ progress is assessed through summative (e.g., as-
signments, a midterm, and a final exam) and formative assessments
(e.g., in-class exercises and exercises with automated feedback). In
this context, we focus on assignments designed to reinforce the lec-
ture material while developing programming skills through practice.
They account for 10% of the final grade, and are completed individ-
ually at home. As the course progresses, tasks grow in complexity:
early ones have predictable solutions, while later ones admit mul-
tiple correct implementations, supporting creativity and reducing
code similarity. Appendix A outlines the core topics covered in each
assignment. In total, we collected 1,762 raw submissions, including
2022 and 2024. We pre-processed this raw data to remove duplicate
entries ! and anonymize all personal data.

Data Cleaning. To ensure statistical independence of the observa-
tions between the two-year cohorts, any student who appeared in
2022 and 2024 was removed from the 2024 dataset. For example, if
a student submitted Assignment 1 in both years, these two submis-
sions would be inherently dependent. Removing such cases ensures
that comparisons reflect truly independent student cohorts.

Anonymization. Student submissions came in two forms: Python
scripts (. py files) or Jupyter notebooks (. ipynb files). Jupyter note-
books were converted into Python scripts, ensuring that both the
original logic and the order of the code cells were preserved. More-
over, all the resulting scripts were anonymized; personal data was
removed and the filenames were replaced with hashed IDs.

JPlag Token Threshold. To assess syntactic and semantic similarity,
we used JPlag, an open-source tool for source code plagiarism
detection [38]. JPlag has a minimum token threshold to exclude
empty or trivial submissions from the analysis [30].

Final Dataset. After removing duplicates and cleaning the raw data,
the resulting dataset contains 1,614 submissions (Table 1).

IStudents who were enrolled in the course in both years
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Figure 1: Overview of the study design.

Baseline. For the baseline, we generated the Al solutions for each
assignment in March 2025 using ChatGPT-4 and Gemini 2.0. We use
the same problem descriptions provided to students.

Assignment Submissions  Duplicates  JPlag Filter Total
& 2022 2024 2022 2024 2022 2024
Al 306 389 - 48 3 8 636
A2 254 336 - 30 - - 560
A3 197 280 - - 54 5 418
Total 757 1005 0 78 57 13 1614

Table 1: Number of submissions used for the analysis.

3.4 Statistical Analyses

All the statistical analyses are conducted using Python (version
3.10.11) and various libraries (i.e., NumPy, SciPy, and statsmodels).
A fixed random seed (2) was established to maintain reproducibil-
ity in all resampling procedures [8]. Because similarity scores (to
both student and Al submissions) were non-normally distributed,
bounded between 0 and 1, and clustered at the boundary values, we
used nonparametric, resampling-based methods throughout analy-
sis. For each research question, the selection of statistical tests was
guided by three main considerations: the study design (independent
or repeated measures), the scale of the data (continuous bounded
[0,1], similarity scores, or binary syntax-failure outcomes), and the
presence of non-normal heavily tied distributions. To control the
family-wise error rate within each group of related tests, Holm’s
step-down adjustment was applied to the p-values [18].

4 Code Similarity Between Students in 2022 and
2024 (RQ1)
4.1 Approach

To evaluate whether the distributions of code similarity scores dif-
fered between the 2022 and 2024 students for each assignment, all
hypothesis tests were performed using a two-sided significance
level of & = 0.05. The maximum similarity among student submis-
sions was defined as the highest pairwise JPlag similarity score
obtained by a student against any other submission within the

same assignment and year, bounded in [0, 1]. Al-generated base-
lines were excluded from this analysis to strictly focus on similarity
patterns among students.

Primary analysis. To determine whether the similarity-score dis-
tributions for 2022 and 2024 are equal in distribution, we apply
the k-sample Anderson-Darling test [33]. Since standard asymp-
totic approximations may be unreliable due to heavy ties and the
bounded nature of the data, we derive significance levels using a
nonparametric permutation procedure (B = 10, 000) that randomly
shuffles year labels within each assignment [11, 17]. The final p-
values are computed using the add-one adjustment p = % to avoid
zero values, where k denotes the number of permuted statistics at
least as extreme as the observed value.

Multiplicity control. Holm adjustments were applied separately
to the families of tests using a family-wise significance level of
a = 0.05.

4.2 Descriptive Statistics

Table 2 presents the descriptive statistics of the code similarity
scores for each assignment per year. The most prominent pattern
was observed in A2 for 2022, where 61.42% of submissions had
similarity scores of 1.0, compared to only 1.31% in 2024. In contrast,
similarity scores of 0.0 were rare in all assignments, never exceeding
1.5%. Al and A3 exhibited more balanced distributions, although
both showed modest increases in similarity scores of 1.0 from 2022
to 2024.

Given that many similarity scores were concentrated at the ex-
act boundaries, representing either completely unique code (0.0)
or identical submissions (1.0), we decomposed the analysis into
interior-only comparisons and separate tests for boundary propor-
tions to better characterize distributional differences.

Median IQR Proportion = 0 (%) Proportion = 1 (%)
2022 2024 2022 2024 2022 2024 2022 2024
Al 0947 1.000 0.192 0.191 0.99 1.50 48.18 51.95
A2 1.000 0439 0.656 0.156 0.00 0.00 61.42 1.31
A3 0416 0.692 0.164 0.241 0.00 0.00 0.00 1.45

Table 2: Descriptive statistics for student similarity scores by
assignment, 2022 and 2024.
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4.3 Primary Analysis

To differentiate between general shifts in solution structure and di-
rect copying, the primary analysis included the Anderson-Darling
test to compare overall similarity distributions, alongside boundary
proportion tests to specifically monitor the prevalence of struc-
turally independent solutions (0.0) and exact peer-to-peer duplica-
tion (1.0).

Based on the results (Table 3), we observe clear differences
between cohorts for A2 and A3 after Holm adjustment. For A2,
the Anderson-Darling statistic was 135.043 with Holm-adjusted
p < 0.001, indicating a large and highly significant shift in dis-
tribution that points to a structural convergence in student code.
Similarly, A3 showed a very large statistic of 88.999 with Holm-
adjusted p < 0.001, reflecting a substantial distributional change
where partial code matches became more frequent or intense. In
contrast, A1l showed no significant difference, with a statistic of
0.771 and Holm-adjusted p = 0.519.

Interior-only Distributional tests. To test the interior-only distri-
bution, we removed all scores at exactly 0.0 or 1.0. Then, we tested
the distributional equality again in the remaining samples (Table 3).
After removing the boundary values, all three assignments showed
significant differences between 2022 and 2024. A2 remained highly
significant (Statistic = 35.543, Holm p < 0.001), A3 continued to
show a strong effect (Statistic = 87.393, Holm p < 0.001), and A1l
revealed a smaller but statistically significant difference (Statistic
=3.665, Holm p = 0.010). This indicates that, beyond changes at
the extreme similarity values, there were also notable shifts in the
interior portions of the similarity score distributions.

Full dataset Interior-only

Statistic p (raw) p (Holm) ngzp2 nppps Statistic  p (raw) p (Holm)

Al 0.771 0.519 0.519 154 155 3.665 0.010 0.010
A2 135.043 < 0.001 < 0.001 98 302 35.543 < 0.001 < 0.001
A3 88.999 < 0.001 < 0.001 143 271 87.393 < 0.001 < 0.001

Table 3: Anderson-Darling tests on full dataset (including
boundaries) and Interior-only dataset for similarity scores.

Boundary proportion tests. The proportions of submissions with
a similarity score of one (1.0) or zero (0.0) are compared using
Pearson’s y? independence test without Yates continuity correc-
tion [1, 24, 27]. When the expected cell count was less than five, or
when zeros invalidated the y? test assumptions, Fisher’s exact test
was applied instead [1, 12, 13]. Also, if both years did not have ob-
servations at a given boundary value, the comparison was reported
as not applicable (-’).

Table 4 presents the comparison of proportions between years.
Based on the results, A2 showed a significant decrease in the propor-
tion of scores equal to 1.0 from 2022 to 2024. After Holm adjustment,
no other boundary effects were significant.

The results show that significant changes in code similarity pat-
terns between 2022 and 2024 occurred at the same time as the
emergence of generative Al tools. Assignment 2 (A2) experienced
the most change, with the proportion of perfectly identical submis-
sions dropping sharply from 61.42% to 1.31%. In addition, the overall
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Boundary Test 2022 (%) 2024(%) p (raw) p (Holm)

Al 1.0 x* 48.18 51.95 0.343 0.608
A2 1.0 x? 61.42 131 <0.001 <0.001
A3 1.0 Fisher  0.00 145 0.304 0.608
Al 0.0 Fisher 0.9 1.50 0.727 1.000
A2 0.0 - 0.00 0.00 - -
A3 0.0 - 0.00 0.00 - -

Table 4: Comparison of proportions at similarity scores 0.0
and 1.0 by assignment, 2022 and 2024.

shape of the similarity distribution was restructured, suggesting
a fundamental change in how students approached this mid-level
task. For A2, we reject Hy, indicating a strong difference between
years.

Assignment 3 (A3) also showed a considerable change, reflected
in a higher median similarity score from 0.416 to 0.692. Unlike A2,
this change occurred primarily within the interior of the distri-
bution, indicating greater convergence among student solutions
without increases at the boundaries. For A3, we also reject Hy.

In contrast, Assignment 1 (A1) remained largely stable across
years, showing no major shift in similarity patterns at the bound-
aries. However, a modest interior change was detected. This stability
suggests that either generative Al tools were not heavily used for
this introductory task or that the nature of the task limited variation
in solutions. For A1, we reject Hy in the interior-only analysis.

@ Take Away RQ1

Code similarity patterns shifted markedly between 2022 and 2024,
coinciding with the rise of generative Al tools. The largest trans-
formation occurred in A2, where identical submissions nearly
disappeared, and the distribution itself was reshaped, signal-
ing a fundamental change in how students tackled the task. A3
also changed substantially, with submissions converging toward
higher similarity without extreme clustering. In contrast, A1 re-
mained stable, showing only minor interior shifts. We therefore
reject Hy for A2 and A3, whereas for Al we fail to reject Hy,
noting only a minor interior redistribution.

5 Comparing Student-Al Similarity in 2024
(RQ2)
5.1 Approach

To evaluate whether students in the 2024 cohort showed similarity
to Al-generated answers across assignments, we analyze repeated
measures for each student across all assignments (A1, A2, and A3).
For each submission, Al similarity was computed by comparing
the student’s code to fixed baseline solutions generated using Chat-
GPT and Gemini for the corresponding assignment, and defining a
student’s Al similarity as the element-wise maximum of the GPT-
based and Gemini-based similarity scores. The analysis is limited
to complete cases (n = 222), which are students who submitted all
three assignments in 2024.

5.1.1  Primary analysis. The primary analysis treated assignments
as a within-subject factor and evaluated whether the distributions
of code similarity scores differed across assignments (A1, A2, and
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A3). We apply the Friedman test as a nonparametric omnibus test for
related samples [16, 37]. The effect size is assessed using Kendall’'s
coeflicient of concordance (W), which is calculated directly from
the Friedman statistic y? [19]. If the omnibus test shows a signifi-
cant difference, we perform pairwise Wilcoxon signed-rank tests
between assignments (A1-A2, A1-A3, A2-A3) to determine which
pairs accounted for the overall difference [9, 43]. These pairwise
tests are explicitly performed as two-sided tests, evaluating higher
and lower similarity differences. The Pratt method was used to han-
dle zero differences, so exact ties remained in the analysis but were
assigned a zero rank [29]. Moreover, for each pairwise comparison,
we calculated the paired Rank-Biserial correlation as a measure of
effect size with bootstrap percentile 95%, and confidence intervals
based on 10,000 resamples [10, 20].

5.1.2  Sensitivity analysis. Restricting complete-cases can reduce
the sample size, and within-subject methods may lose power when
values are highly concentrated at the boundary, where 1.0 indi-
cates a perfect match; we performed a between-subjects sensitivity
analysis [21].

Thus, we first apply a Kruskal-Wallis test as an omnibus compari-
son of A1, A2, and A3 [22]. Effect sizes were reported as epsilon-
squared (¢2), with 95% confidence intervals estimated using per-
centile bootstrapping based on 10,000 stratified resamples [10, 39].
When the Kruskal-Wallis test is significant, pairwise two-sided
Mann-Whitney U tests are performed between assignments, with
Cliff’s delta and bootstrap percentile 95% confidence intervals as
effect sizes (7, 10, 23].

5.1.3  Multiplicity control. To control the family-wise error rate,
we used Holm’s step-down adjustment at & = 0.05 for the three
pairwise Wilcoxon signed-rank tests from the primary repeated-
measures analysis [18]. Sensitivity analysis is reported with raw
two-sided p-values, and it is treated as descriptive, without multi-
plicity adjustment.

Al 2024: Similarity with GenAl Submissions
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Figure 2: Similarity distribution with Al-generated baselines
of Alin 2024.

5.2 Descriptive Statistics

Figures 2 to 4 show the Al baseline similarity distributions between
assignments, providing context for the analyses that follow. Table 5
summarizes the maximum similarity to Al-generated answers in
2024. In this context, a similarity score of 1.0 denotes maximal
resemblance to at least one Al baseline, whereas 0.0 indicates no
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A2 2024: Similarity with GenAl Submissions
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Figure 3: Similarity distribution with Al-generated baselines
of A2 in 2024.

A3 2024: Similarity with GenAl Submissions
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Figure 4: Similarity distribution with AI-generated baselines
of A3 in 2024.

detectable resemblance under JPlag scoring. With these definitions
established, we observe that A1 shows the highest central tendency,
with Q2 (50%) = 0.643 on the raw 0-1 similarity scale, and substantial
clustering at both boundaries, with 24.93% of scores at 0.0 and 9.91%
at 1.0. In contrast, A2 and A3 had almost no boundary clustering,
with proportions at 0.0 below 0.40% and no scores at 1.0.

Given these characteristics, we used rank-based, nonparamet-
ric tests and a between-subject sensitivity analysis to account for
boundary effects.

AVG STD Q1(25%) Q2(50%) Q3(75%) IQR Proportion=0(%) Proportion =1 (%)

Al 0530 0.342 0.267 0.643 0.800 0.533 24.93 9.91
A2 0.197 0.073 0.145 0.190 0.241 0.096 0.33 0.00
A3 0492 0.175 0.373 0.507 0.626 0.253 0.36 0.00

Table 5: Descriptive statistics for students’ maximum simi-
larity to Al-generated baselines.

5.3 Primary Analysis

The Friedman omnibus test revealed a statistically significant dif-
ference in the distributions of maximum Al similarity scores across
the three assignments (y%(2) = 167.177, p < 0.001, n = 222). With
k = 3 conditions (A1, A2, A3), the df = 2 reflects k — 1. The as-
sociated Kendall’s W = 0.377 quantifies effect magnitude (0 = no
systematic within-student differences; 1 = perfect ordering) and is
typically interpreted as a moderate effect. Given the significant om-
nibus, we conducted three Wilcoxon signed-rank tests with Holm



The Clash of Codes: From Peer-to-Peer Duplication to Al-Generation in Introductory Programming Assignments

adjustment, as shown in Table 6. A1-A2 and A2-A3 were significant
(Holm p < 0.001) with large Rank-Biserial effects (r = 0.814 and
r = —0.979, respectively), while A1-A3 was not significant (Holm
p =0.163; r = 0.107). Here, positive r values indicate that the scores
in the first assignment tend to be higher than in the second. Collec-
tively, these results imply the pattern Al ~ A3 > A2 for maximum
similarity to Al baselines in 2024.

Zero Differences (%) w p(raw)  p(Holm) Rank-Biserial r [95% CI]
Al1-A2 0.00 2305.000 < 0.001 < 0.001 0.814 [0.734, 0.878]
Al1-A3 0.45 11040.000 0.163 0.163 0.107 [-0.047, 0.259]
A2-A3 0.00 262.000 < 0.001 < 0.001 -0.979 [-0.998, -0.950]

Table 6: Wilcoxon signed-rank pairwise comparisons of max-
imum similarity between assignments, 2024.

Sensitivity Analysis. To assess robustness, we performed a between-
subject analysis, treating the three groups as independent. The
Kruskal-Wallis test showed a statistically significant difference in
maximum Al similarity across assignments (H(2) = 269.960, p <
0.001), with a large effect size (€ = 0.294 [0.250, 0.335]). Practically,
this result confirms that A1 and A3 tend to show higher Al similarity
than A2. Supporting this, the pairwise Mann-Whitney tests (Table 7)
show that the similarity scores of A1>A2 and A3>A2 (both p <
0.001; positive Cliff’s § means that the first group tends to have
higher scores), with medians A1= 0.643, A2= 0.190, A3= 0.507. The
A1-A3 contrast is smaller (yet significant in the sensitivity analysis),
yielding the overall pattern A1 > A3 > A2, which aligns with the
repeated-measures results and suggests that the results are robust
rather than being driven by the restriction to complete cases.

U p (raw) Cliff’s § [95% CI] Median A Median B
Al1-A2  76363.500 < 0.001 0.499 [0.408, 0.590] 0.643 0.190
A1-A3 54 884.500 < 0.001 0.199 [0.106, 0.292] 0.643 0.507
A2-A3 5638.000 < 0.001 -0.866 [-0.907, -0.819] 0.190 0.507

Table 7: Mann-Whitney U sensitivity analysis of maximum
similarity between assignments, 2024.

The within-student distributions of maximum similarity to Al
baselines differ across assignments in 2024 (Friedman y?(2) = 167.177,
p < 0.001, W = 0.377, n = 222); we therefore reject Hy that Al,
A2, and A3 share the same distribution. Holm-adjusted Wilcoxon
signed-rank tests show A1 > A2 and A3 > A2 (both p < 0.001;
large Rank-Biserial effects, r = 0.814 for A1-A2 and r = —0.979
for A2-A3), whereas the A1-A3 contrast is not significant (Holm
p =0.163; r = 0.107). Medians mirror this ordering (A1 = 0.643, A2
=0.190, A3 = 0.507), indicating Al ~ A3 > A2.

Boundary clustering is most pronounced in A1 (24.93% at 0.0;
9.91% at 1.0) and minimal in A2 and A3 (proportion at 0.0 < 0.40%;
none at 1.0), consistent with a higher resemblance in A1 and A3.

A between-subjects Mann-Whitney U sensitivity analysis with
Cliff’s § yields the same qualitative ordering (A1 > A2, A3 > A2;
see Table 7), indicating that the pattern is robust to the complete-
cases restriction.
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@ Take Away RQ2

The degree of similarity to Al baselines is highly assignment-
dependent. Specifically, A1 and A3 show substantially higher
resemblance than A2. A1 also exhibits stronger clustering at the
boundaries; however, this pattern may reflect the constrained
solution space of a relatively simple task with limited implementa-
tion variability, rather than stronger Al influence. In contrast, A2
shows neither pronounced boundary clustering nor high similar-
ity to Al baselines. Accordingly, we reject Hy, as the distributions
of maximum AI similarity differ across assignments in 2024.

6 Syntax Correctness Between Submissions in
2022 and 2024 (RQ3)

6.1 Approach

This research question examines whether the proportion of parsing
errors differs between years for each assignment. For this goal, each
submission was parsed using Python version 3.10.11. To evaluate
the difference in the proportion of parsing errors between 2022 and
2024 for each assignment, we analyze whether a submission resulted
in a parsing error (1 = failure, 0 = no failure). Each assignment was
analyzed separately. To preserve the independence of the samples,
the students belong to a single cohort (either 2022 or 2024). All
hypothesis tests were conducted using two-sided inference with a
family-wise significance level set at & = 0.05.

6.1.1  Primary analysis. We create a 2 X 2 contingency table for
each assignment, with the years (2022 and 2024) as rows and the
parsing outcomes as columns. We used Pearson’s y? independence
test without Yates continuity correction when all cell counts ? are
at least five [1, 24, 27]. If this condition was not satisfied or zero
counts were present, we used Fisher’s exact test [1, 12, 13]. For
Pearson’s y? test, we check the expected cell counts under the null
hypothesis of independence,

(row; total) x (column; total)

Eij=

>

grand total

and apply the y? test only when all E;; > 5; otherwise (including
zeros or sparse cells) we use Fisher’s exact test.

Two-sided p-values were reported for both Pearson’s y? and
Fisher’s exact tests. The Holm step-down procedure was then ap-
plied in all three assignments to control the family-wise error rate
[18].

Multiplicity control. To account for multiple tests across assign-
ments, we applied Holm’s step-down procedure to the three primary
p-values (one per assignment from Pearson’s y? or Fisher’s exact
test), controlling the family-wise error rate at = 0.05 [18].

6.2 Descriptive Statistics

Table 8 provides the descriptive statistics for syntax failure rates,
showing the counts and percentages of failures by year and assign-
ment. Rates are the proportion of submissions with parsing errors
(1 = failure, 0 = no failure). We observe that the failure rates were
low in Assignment 1 for both years (1.32% in 2022 and 2.10% in 2024).

2Observed frequencies in each of the four cells of the 2 X 2 table (year X parsing
outcome)
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Assignment 2 showed the highest overall rates, although there was
a decrease from 15.75% in 2022 to 10.78% in 2024. Assignment 3
showed intermediate rates, with a slight decline from 8.39% to 6.55%
over the years.

6.3 Primary Analysis

For each assignment and year, syntax failure rates are computed
using the number of submissions included in the final dataset after
preprocessing, as summarized in Table 1.

A1. Syntax failure rates were low in both years (2022: 4/303 =
1.32%; 2024: 7/333 = 2.10%). The difference was not significant
(x? = 0.571, p = 0.450, Holm p = 0.900), indicating no detectable
change in Al.

A2. Failure rates decreased from 40/254 = 15.75% (2022) to
33/306 = 10.78% (2024). Although suggestive, this difference did not
reach significance after multiplicity control (y? = 3.017, p = 0.082,
Holm p = 0.247), so we fail to reject Hy for A2.

A3. Rates were 12/143 = 8.39% (2022) versus 18/275 = 6.55%
(2024), a small decline that was not statistically significant (y* =
0.481, p = 0.488, Holm p = 0.900).

Taken together, none of the assignments showed a statistically
significant change from year-to-year in syntactic error rates after
the Holm adjustment; therefore, we fail to reject Hy for A1, A2,
or A3.

Number of Failures Failure Rate (%) Test Statistic p (raw) p Holm

2022 2024 2022 2024
Al 4 7 1.32 2.10 0.571 0.450 0.900
A2 40 33 15.75 10.78 )(2 df=1) 3.017 0.082 0.247
A3 12 18 8.39 6.55 0.481 0.488 0.900

Table 8: Descriptive statistics for parsing errors and primary
tests by assignment.

@ Take Away RQ3

Syntax correctness rates were stable over time. Although raw
failure rates in A2 and A3 decreased (A2: 15.75% — 10.78%; A3:
8.39% — 6.55%), Al remained low (2022: 1.32%, 2024: 2.10%).
None of these differences were statistically significant after Holm
adjustment of the y? tests. We therefore fail to reject Hy for
A1, A2, or A3. In short, while similarity patterns changed across
years, there is no statistically significant evidence of a cohort-level
change in basic syntactic correctness.

7 Discussion

7.1 Shifts in Code Similarity Patterns Across
Assignments

Our findings reveal a shift in how students approach programming
assignments after the widespread availability of generative Al tools.
The most significant change occurred in Assignment 2 (A2). In 2022,
61.42% of submissions had a maximum similarity of 1.0, compared
to only 1.31% in 2024, while similarity scores of 0.0 remained rare in
both years. At the same time, the distribution of scores within the
interior range (between 0.0 and 1.0) became more concentrated in
2024, with the interquartile range decreasing from 0.656 in 2022 to
0.156 in 2024. Together, these results indicate a sharp reduction in
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perfect matches and a shift toward a tighter clustering of similarity
among non-identical submissions, pointing to a transition away
from traditional forms of plagiarism (e.g., code sharing between
classmates) toward more diverse and individualized solutions, likely
influenced by the use of generative AL

For Assignment 3 (A3), the most significant change was an in-
crease in the median similarity score, rising from 0.416 in 2022 to
0.692 in 2024. Importantly, this change was not accompanied by an
increase in perfect 1.0 matches at the boundary, indicating that the
year-to-year difference occurred primarily within the interior of the
distribution. This could suggest that while students’ submissions
became more alike overall, they were not identical. Instead, stu-
dents appeared to converge on similar solution strategies without
directly copying one another’s code.

Assignment 1 (A1) remained largely stable between 2022 and
2024. Boundary proportions at 0.0 and 1.0 showed no meaningful
differences, and only a modest redistribution was detected within
the interior scores. This stability could suggest that generative Al
tools had limited influence on this introductory task, likely because
the problem structure already constrained the range of possible
correct solutions.

7.2 Task Complexity and Alignment with
AI-Generated Solutions

When examining resemblance to fixed Al baselines within the 2024
cohort, we observed distinct patterns across assignments. Both A1l
and A3 exhibited high similarity to Al-generated baselines, while
A2 was notably lower. This suggests that Al tools are well suited
to simple tasks, where their outputs closely match what students
produce independently, and to complex, open-ended tasks, where
students may adopt Al-generated guidance to structure their solu-
tions. By contrast, mid-level tasks such as A2 appear to encourage
more diverse approaches, resulting in lower direct Al resemblance.

7.3 No Significant Change in Syntax Error

Despite these shifts in similarity patterns, syntax correctness did
not differ significantly between 2022 and 2024. Although raw failure
rates decreased slightly in A2 and A3, these differences were not
statistically significant after correcting for multiple comparisons.
This finding supports the interpretation that while generative Al
may influence the structure and originality of code, it has not yet
produced measurable improvements or declines in basic syntactic
accuracy across the cohort.

9 Summary

Overall, these results highlight a change in the nature of academic
integrity risks. Where earlier concerns centered on student-to-
student duplication, our data show a move toward student-to-
Al convergence, with solutions increasingly resembling those
generated by automated systems. This transition has important
implications for how educators interpret similarity metrics and
assess originality in the age of generative Al
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8 Implications

These findings have several implications for educators, institutions,
and policy makers as they adapt to the widespread use of generative
Al in higher education.

From Peer-to-Peer Duplication to Student-AI Convergence. The
marked decrease in perfect peer matches in A2 along with the
increase in similarity to Al-generated baselines highlights a funda-
mental shift in the meaning of similarity scores. Traditional plagia-
rism detection tools such as JPlag remain valuable for identifying
direct copying among students, but they are no longer sufficient for
detecting academic integrity violations when the source of similar-
ity is an external Al system. This calls for a rethinking of integrity
frameworks and the development of new detection strategies that
account for student-Al convergence rather than peer-to-peer dupli-
cation.

Rethink Programming Assignments in the Age of AL The strong
alignment of A1 and A3 with Al baselines suggests that the design
of programming assignments must evolve. Predictable, straight-
forward tasks (A1) are particularly vulnerable to full automation
by generative Al raising questions about their effectiveness as
authentic assessments of student learning. At the same time, the
convergence seen in open-ended tasks (A3) indicates that Al tools
may influence how students structure their solutions even when cre-
ativity is encouraged. These patterns imply that future assessments
should emphasize problem-solving processes, reflection, and rea-
soning, rather than final code alone, to better differentiate between
Al-generated and human written work.

Code Production vs. Conceptual Mastery. The lack of significant
improvement in syntax correctness over the years underscores that
Al does not necessarily improve foundational programming skills
such as debugging or error identification. This finding suggests
that, while generative Al can accelerate code production, it does not
guarantee deeper learning or mastery of core concepts. Educators
must therefore integrate explicit instructional strategies to support
debugging, comprehension, and algorithmic thinking, rather than
assuming that Al assistance will address these persistent challenges.

GenAl Policies. At the institutional level, the transition from
student-to-student plagiarism to student-Al convergence highlights
the need to update policies and guidelines. Institutions need clear
frameworks that define acceptable and unacceptable uses of gener-
ative Al coupled with pedagogical practices that encourage respon-
sible engagement with these tools. Without such guidance, both
students and instructors face uncertainty about ethical boundaries,
and assessments risk losing their ability to meaningfully measure
individual achievement. Our results provide a data-driven founda-
tion for these conversations and point to the need for proactive
course and curriculum redesign in the era of Al-driven program-
ming support.

Assignments in Controlled Environments. To mitigate the usage
of generative Al tools in the introductory programming course,
assignments could be conducted in a controlled environment.

This would guarantee that students would have limited access to
materials and tools available to develop assignments. Even though
this is an interesting direction, additional considerations are needed.
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For example, physical facilities are limited; this puts extra pressure
and stress on teaching staff and students, additional overhead in
terms of personnel to supervise those sessions, and the length and
scope of the assignments must be more concise given the time
constraints.

9 Limitations

Internal validity. In A3, the 2022 submissions had inconsistent

file-naming conventions. Thus, students who submitted in 2022 and
2024 were not detected as duplicates, potentially inflating similarity
levels for A3.
In addition, despite maintaining the same instructor and assign-
ments, uncontrolled variables may introduce bias. These include
differences in cohort preparation, motivation, and informal support,
as well as logistical factors such as class size, timing, or grade stakes.
However, JPlag token thresholds and permutation-based p-values
reduce trivial matches and ties, but cannot eliminate underlying
design biases.

External validity. We studied only three assignments from a
single introductory programming course at a single institution.
Although these assignments represent an important assessment
method, they do not capture the diversity of assessment formats
(e.g., larger projects or written exams). Therefore, the generalization
of the results to other contexts, courses, or programming languages
is limited. Although the period (2022-2024) coincides with rapid
model upgrades, other timelines may not replicate the magnitudes
observed in this study.

Construct validity. The influence of Al was assessed through
similarity to fixed ChatGPT and Gemini baselines generated under
specific prompts and model versions. However, this approach offers
only a single representation of Al assistance. Since different prompts
or model versions could produce varying outputs, our similarity
scores should be interpreted as reflecting resemblance to these
specific baselines rather than to the full range of solutions that
GenAl can produce.

Separately, parsing errors focus on syntax only; they do not cap-
ture logic, semantics, runtime, or code quality errors. Additionally,
this metric may be insensitive to Al usage among struggling stu-
dents. For instance, if a student lacks the competency to interpret
and resolve basic error messages, they are likely to have high error
rates even when provided with Al support.

10 Conclusion and Future Work

Conclusion. This study examined the impact of generative Al on
introductory programming assignments by comparing two cohorts
of students (2022 and 2024) who completed the same three Python
assignments under the same instructor and course structure. We
used three complementary measures: student-student similarity
measured with JPlag (RQ1-Section 4), resemblance to Al-generated
solutions compared against baseline solutions (RQ2-Section 5), and
syntax correctness assessed via parsing errors (RQ3-Section 6).

Across the three assignments, the most significant change oc-
curred in Assignment 2 (A2). Perfect peer-to-peer matches dropped
sharply from 2022 to 2024, and the non-boundary scores (those not
exactly 0.0 or 1.0) moved from a wide spread to a narrow cluster.
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Assignment 3 (A3) also changed, but only in the middle range of
scores (excluding exact 0.0 and 1.0): students’ submissions were
generally similar, without an increase in perfectly identical matches.
In contrast, Assignment 1 (A1) remained stable across years.

These patterns suggest a move away from traditional forms of
plagiarism (e.g., code sharing between students) toward more di-
verse, individualized solutions, likely influenced by generative Al
tools. Within the 2024 cohort, the similarity to Al-generated base-
lines was highest for A1 and A3, and considerably lower for A2.
This might indicate that both simple and complex tasks are more
susceptible to Al influence, while mid-level tasks such as A2 en-
courage a wider range of approaches. Despite these changes, syntax
error rates did not differ significantly between years, indicating
that Al use has not yet led to measurable improvements or declines
in basic syntactic accuracy.

In general, these findings might imply a change in academic in-
tegrity concerns. Earlier challenges focused on student-to-student
duplication; however, the current challenge has become differenti-
ating between human-written and Al-influenced code. This change
might have important implications in how educators design and cre-
ate assignments, evaluate similarity scores, and maintain integrity
in programming education.

Future work. Future research should expand the scope of this
study by examining additional courses, programming languages,
and institutions. Replicating the analysis across diverse contexts
will help determine whether the observed patterns can be gener-
alized or are context-specific. Tracking future cohorts over time
could also reveal how these trends evolve as GenAlI tools continue
to advance.

Another important direction is strengthening causal inference.
Because this study was observational, it cannot establish definitive
causal relationships between GenAl use and the changes observed
in code similarity patterns. Future work could employ experimen-
tal designs, such as randomized assignment versions, or natural
experiments such as mid-course policy changes, to better isolate
the effects of AI on student behavior and learning outcomes.

Future work should also develop broader measures of Al influ-
ence. While this study used similarity to fixed baselines, incorporat-
ing multiple Al models or prompts, as well as runtime correctness
checks, would provide a richer and more robust understanding of
Al involvement in student work.

Finally, linking similarity patterns with learning outcomes is
essential. Examining debugging skills, conceptual understanding,
and transfer performance would clarify whether Al resemblance
reflects meaningful learning or only surface-level code generation.
This could be further strengthened by combining similarity analyses
with behavioral or survey data, such as self-reported Al use, as well
as individual IDE interaction logs capturing development patterns
(e.g., incremental editing or large code insertions) to better interpret
the processes underlying observed similarity trends.
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A Topics Per Assignment

Assignment

Topics Covered

Assignment 1 (A1)

Fundamental mathematical operations, including addition, subtraction, multiplication, and
division.

Assignment 2 (A2)

Use of global variables within functions; defining and calling functions; use of nested lists and
dictionaries for variable and data organization; reading and analyzing file content; handling
exceptions to prevent runtime errors; and use of built-in Python methods such as replace(),
strip(), and isdigit().

Assignment 3 (A3)

Object-oriented programming concepts including class creation and inheritance; implementa-
tion of functions and methods; use of nested lists and dictionaries; use of built-in functions
such as map(), join(), and max (); reading and analyzing file content; and importing external
libraries such as statistics for numerical computations.

Table 9: Topics covered by each assignment.
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