
Workbench for Creating Block-Based Environments

Mauricio Verano Merino
m.verano.merino@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Koen van Wijk
koen.van.wijk@ict.nl

ICT
Eindhoven, The Netherlands

Abstract

Block-based environments are visual-programming environ-
ments that allow users to create programs by dragging and
dropping blocks that resemble jigsaw puzzle pieces. These
environments have proven to lower the entry barrier of
programming for end-users. Besides using block-based envi-
ronments for programming, they can also help edit popular
semi-structured data languages such as JSON and YAML.
However, creating new block-based environments is still
challenging; developers can develop them in an ad-hoc way
or using context-free grammars in a language workbench.
Given the visual nature of block-based environments, both
options are valid; however, developers have some limitations
when describing them. In this paper, we present Blockly-
bench, which is a meta-block-based environment for describ-
ing block-based environments for both programming and
semi-structured data languages. This tool allows develop-
ers to express the specific elements of block-based environ-
ments using the blocks notation. To evaluate Blocklybench,
we present three case studies. Our results show that Blockly-
bench allows developers to describe block-based specific
aspects of language constructs such as layout, color, block
connections, and code generators.

CCS Concepts: • Software and its engineering→ Visual

languages; Domain specific languages; Graphical user
interface languages; Syntax.

Keywords: block-based environments, data languages, vi-
sual languages, Projectional editors, IDEs, Blockly

ACM Reference Format:

Mauricio Verano Merino and Koen van Wijk. 2022. Workbench

for Creating Block-Based Environments. In Proceedings of the 15th

ACM SIGPLAN International Conference on Software Language En-

gineering (SLE ’22), December 06ś07, 2022, Auckland, New Zealand.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3567512.

3567518

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SLE ’22, December 06ś07, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9919-7/22/12.

https://doi.org/10.1145/3567512.3567518

1 Introduction

Computer programming allows people to communicate with
computers through a programming language. Computer pro-
gramming has widespread [27] and the number of people per-
forming any type of programming activity has increased [28].
For instance, in the United States of America more than 12
million people say that they perform some programming
at work, and almost 50 million use databases and spread-
sheets [32].
Block-based environments are becoming more popular

because they help to introduce programming concepts to
end-users. This is achieved thanks to their benefits in terms
of usability and lower the entry barrier to programming [1]
by offering a what-you-see-is-what-you-get (WYSIWYG)
experience. Block-based environment are visual program-
ming environments that allow users to create programs by
dragging and dropping blocks that resemble jigsaw puzzle
pieces; each of these blocks represents a language construct.
Moreover, block-based environments allow users to directly
manipulate the program’s Abstract Syntax Tree (AST) so
that creating a block-based program is a form of projectional
editing, and therefore by definition, programs are always
syntactically correct [30, 37, 48, 50, 51]. In particular, this
is useful for semi-structured data languages like JSON or
YAML because editing them is error-prone due to the differ-
ent curly and square braces and the deep nesting between
objects.

Figure 1 shows an example of a block-based environment.
These programming environments are often divided in three
main parts: palette (left), canvas (center), and stage (right).
The palette contains all the language constructs so that users
can browse and discover the different constructs offered
by the language. Then, the canvas is where users create
programs by dragging and dropping blocks from the palette.
Finally, the stage is used to render the output of executing
programs.

Block-based environments are being adopted in different
domains such as Computer Science, Arts, Education, and
Robotics [14, 42, 48]. Therefore, the number of block-based
environments that are being developed is increasing. When
developers want to create new block-based environments
they have essentially two options: extending an existing

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

61

http://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-2278-1365
https://orcid.org/0000-0001-8538-8275
https://doi.org/10.1145/3567512.3567518
https://doi.org/10.1145/3567512.3567518
https://doi.org/10.1145/3567512.3567518

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Mauricio Verano Merino and Koen van Wijk

Figure 1. Block-based environment using Google Blockly.

block-based environment or developing it from scratch us-
ing a General Purpose Language (GPL). Recently, one re-
search project uses specialized language engineering tech-
nology, Language Workbenches, to create block-based envi-
ronments [47]; however, one of its limitations is that it does
not allow developers to define block-based specific features
(e.g., blocks’ color and layout). Therefore, the tooling for
developing these languages relies primarily on ad-hoc im-
plementations through GPLs instead of specialized language
engineering technologies [48].
In this paper, we first present a developer’s trade-off to

support the editing of human-editable semi-structure data
languages (Section 2). This is followed by a brief overview
of the state of the art for developing block-based environ-
ments (Section 3). Then, we present Blocklybench [3], which
allows developers to describe and implement block-based
environments and their code generators using blocks (Sec-
tion 4). This enables developers to describe block-based spe-
cific elements, such as blocks color, layout, and generators.
The generated block-based environments are compiled to
Google Blockly [18]. The meta-environment capabilities of
the Blocklybench are demonstrated by creating block-based
environments for different languages, including a real-life
application (Section 5). The implementation along with ex-
amples is available on GitHub 1.
We conclude this paper with a discussion of the advan-

tages and limitations of the current approach (Section 6),
related work (Section 7), and finally, we draw some conclu-
sions and future directions (Section 8).

2 Developing Editors for Data Languages

When a developer needs an editor for a semi-structured data
language (e.g., JSON or YAML) or a Domain-Specific Lan-
guage (DSL), they have to deal with the trade-off between the
usability for the end-user and their productivity (time avail-
able to invest in implementing the editor).. Table 1 presents
a summary of the different levels described above.

Level 1. The developer can expose the semi-structured
data file directly. Configuration files for system administra-
tors and developers often use this format. This is a very cheap

1https://github.com/block-based-langs/blocklybench

option as the developer does not need to create anything.
The user of this file can just use any text editor. However, it
is hard for the user to learn as the syntax and scheme are
unfamiliar and error-prone. Therefore, the level is typically
not exposed to end-users and is used by developers.

Level 2. The developer can still expose the semi-structured
data file; however, it also supplies a scheme. This will help the
users of this file get suggestions and check for consistency.
This will cost the developer in the order of one day. This level
exposes the syntax, but it is still not exposed to end-users
and is used by developers.

Level 3. The developer can also choose to make a block-
based environment that represents the semi-structured data
file. The user does not have to learn the syntax or scheme
as the block-based environment is projectional. Besides this,
the block-based environment can give tooltips and directly
link to the documentation. This paper introduces a meta-
environment that reduces the developer costs to a magnitude
of days.

Level 4. The developer can also choose to make an edi-
tor in Eclipse Modeling Framework (e.g., Sirius, Eugenia, or
GMF) or MPS. However, the costs of creating this editor are
higher, in the order of a week.

Level 5. The developer makes a dedicated (web) applica-
tion for the semi-structured data. The costs of creating this
dedicated application are in the order of a month.

Although all levels are used, we argue that there is a big
gap in terms of usability and development costs between
level 2 and level 4. A block-based environment can fill this
gap. The following section discusses the ways of developing
block-based environments.

3 Developing Block-Based Environments

This section presents developers’ most common ways and
tools to create block-based environments. One of the most
common ways to develop a block-based environment is by
implementing everything from scratch through GPLs. This
is a popular solution but expensive in terms of productiv-
ity since developers must write everything from scratch.
Nowadays, software libraries are essential for software de-
velopment, and today’s systems heavily rely on libraries
to increase developers’ productivity and reduce develop-
ment time [41]. In the context of block-based environment
development the context is not different, as identified by
Verano Merino et al. [48].

3.1 Libraries

Most block-based environments are implemented using third-
party libraries or extending existing block-based environ-
ments. In this sense, Google Blockly [18] is by far the most

62

https://github.com/block-based-langs/blocklybench

Workbench for Creating Block-Based Environments SLE ’22, December 06ś07, 2022, Auckland, New Zealand

Table 1. Levels of editors for semi-structured data languages.

Level Implementation Example Development costs Cost to learn User

1 Text Notepad 0 $$ Developer

2 Text + scheme Visual Studio Code $ $$ Developer

3 Block-based environment Blockly $ $ End-user

4 Eclipse Graphical Editor / MPS Capella $$$ $ End user

5 (Web) Application Homey $$$$ $ End user

Table 2. Block definition using Google Blockly.

Textual notation Blocks

Blockly.common.defineBlocks ([

{

"type": "block_type",

"message0": "",

"colour": 230,

"tooltip": "",

"helpUrl": ""

}]);

popular library for developing block-based environments.
This library allows developers to create the entire UI of a
block-based environment using JavaScript or the block fac-
tory interface [19]. In this way, developers can define their
languages’ toolboxes and blocks. Table 2 shows an exam-
ple of how to define a block using Blockly (JavaScript). On
the left side is the textual notation and on the right side is
the equivalent using the block notation offered through the
block factory. Additionally, developers must define the tool-
box containing different categories; each category groups
different blocks (language constructs). Afterward, develop-
ers need to define a code generator so that the behavior of
the language is compiled into an executable programming
language (e.g., JavaScript or Python) or a semi-structured
data language (e.g., JSON or YAML).

3.2 Extending Existing Environments

The other popular solution for developing block-based envi-
ronments is extending existing environments. In this cate-
gory, most developers rely on extending the most popular
and robust platforms such as Scratch [39], Snap! [24], CT-
Blocks [49], and App inventor [52]. This approach has some
limitations because it relies on the existing infrastructure of
the host platform. Therefore, their pertinence depends on
the requirements of the new language. It could be effective
if the desired language could be seen as an extension of the
host language. However, if the desired language requires
domain-specific requirements, this option might be more
challenging than other options.

3.3 Using Language Workbenches

Specialized language technology has been available for sev-
eral years, so-called language workbenches. However, as

identified by [48], their usage in the context of developing
block-based environments is still limited. Only one project,
Kogi [29, 47], uses language workbenches to create block-
based environments. This approach relies on the notion of
describing computer languages through context-free gram-
mars. Kogi takes as input grammars containing the language
definition and processes it to create a block-based coun-
terpart. This approach enables developers to use language
workbenches for creating block-based environments. How-
ever, this approach requires developers to have expertise in
writing grammars, which is not always the case. Another
limitation of this approach is that, as mentioned by the au-
thors, the resulting environments have some usability issues.
The main reason for this is that block-based environments
have some particular characteristics (e.g., layout, colors, and
palette) To overcome this issue, [46] applied some heuris-
tics over the input grammars to improve the usability of
generated languages based on aesthetic criteria defined by
the authors. However, this still imposes some limitations
because developers do not have complete control of the look
and feel of their generated environments.

In the next section, we present an approach that allows de-
velopers to create their block-based environments, including
block-specific features (e.g., layout, colors, and connections),
using block-based notation.

4 Blocklybench

Blocklybench is a tool for describing and implementing
block-based environments using block-based notation. The
generated environments use Google Blockly. This section de-
scribes how to implement a block-based environment using
Blocklybench and all its features.

There are different steps involved when developing a new
block-based environment. First, developers have to define
the language constructs (blocks). Then, they have the option
to create categories to group blocks and ease the discovery
of language constructs for end-users. Finally, blocks need to
be translated into an executable language or data language;
this requires the definition of one or multiple generators
depending on the use cases of the language.
Since offering feedback is essential, as stated by Nor-

man [33] łfeedback must be immediate: even a delay of a

tenth of a second can be disconcertingž, Blocklybench offers

63

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Mauricio Verano Merino and Koen van Wijk

immediate feedback during the whole block-based environ-
ment development process. In this manner, developers can
tweak and see the current status of their implementations in
real life.

Figure 2. Editors.

4.1 Features

This section presents an initial view of Blocklybench as
shown in Figure 2; it is divided into four block-based editors
and one panel: Block Editor (top-left), Toolbox Editor (top-
middle), Final Editor (top-right), Generator Editor (bottom-
left), and Generated Code panel (bottom-right).
The following paragraphs present a detailed description

of each of the four block-based editors and the Generated
Code panel that are part of Blocklybench.

Block Editor. The Block Editor is used to create new
blocks (language constructs) and it is based on the block
factory offered by Blockly [19]. Blocks in the block factory
are defined, as shown in Table 2, by a name, set of inputs, con-
nections, tooltip, help url, and colour. The main difference
between this and the Block Editor is that the latter allows
developers to create multiple blocks in the same workspace,
while the first one allows them to create only one block at a
time.

A block is defined by different properties such as a name,
block connections, possible inputs, tooltip, color, and help
URL. The inputs can contain one or several fields. A block
can be defined with one of five different connections, namely:
top and bottom connections, no connections, left output, top
connection, or bottom connection.
Compared to the existing Block factory, Blocklybench’s

block editor includes four additional field blocks: self refer-
encing, dropdown from URL, dropdown from URL split, and
dropdown with workspaces.
Self-Referencing Field. This field block is a self-referencing
field that creates a drop-down field filledwith the names of all
the other blocks within the editor. This field has three prop-
erties: name, field, and from workspace. The first property for

every field is the name of this field within the block, and one
vital feature is that the name has to be unique. The second
property and third property refer to all fields of all blocks
from the selected workspace that has the name ’FIELD.’ The
Google Workflows language, as described in section 5, uses
this field to create the ’next’ block. The ’next’ block has a
drop-down with all ’NAME’s of the steps.

Dropdown from URL field. This field is also a drop-down
menu filled from a URL, which can be used to fill the menu
options with a longer or dynamic list of elements.

This field has two properties: NAME, and url. The first
property is the NAME of the field, which must be unique in
the block, and the second property is the URL of a file that
contains the options to be displayed in the dropdown. An
example of such a file is shown below:

[

[

"Option␣1␣user␣friendly",

"OPTION1"

],

[

"Option␣2␣user␣friendly",

"OPTION2"

],

]

This file will fill in the dropdown with two options: "Op-
tion 1 user friendly" and "Option 2 user friendly".
Dropdown from URL Split. The field, ’dropdown url split’
is introduced to handle the list when the number of items
in the drop-down list is too long. It helps by grouping the
items and making the drop down more manageable.

This field has even four properties: NAME1, NAME2, url, and
split. The url property works the same as in the previous
field. Now the JSON file needs to be a bit different. The user-
friendly descriptions are split by the split field, in this case
’:’ . NAME1 and NAME2, are the names of two drop-down lists.

[

[

"Option:user␣friendly␣option␣1",

"OPTION:OPT1"

],

[

"Option:user␣friendly␣option␣2",

"OPTION:OPT2"

],

[

"Property:user␣friendly␣property␣1",

"PROP:PROP1"

],

[

"Property:user␣friendly␣property␣2",

"PROP:PROP2"

],

64

Workbench for Creating Block-Based Environments SLE ’22, December 06ś07, 2022, Auckland, New Zealand

]

The first drop-down will be filled with ’Option’ and ’Prop-
erty’. The second drop-down will change depending on the
first. When ’Option’ is selected, the second drop-down will
give ’user-friendly option 1’ and ’user-friendly option 2’. This
is how the drop-down is grouped and managed through the
URL split.
Drop-down withWorkspaces Field. This drop-down field
contains the name of the workspaces or editors; it has one
property (NAME). The field will give a drop-down with the
names of the workspaces; factory (Block editor), toolbox
(Toolbox Editor), code (Generator Editor), and concrete (Fi-
nal Editor). This block is used inside the first field (self-
referencing).

As mentioned before, feedback is essential; therefore, the
resulting block, including its layout and color is live updated
in the toolbox of the Final Editor (top-right Figure 2). In par-
ticular, Blocklybench supports the interactive development
of block-based environments and their artifacts (block defini-
tion, toolbox, and generators) by keeping them in sync. For
instance, a common task is renaming a block’s name; when
this action occurs, Blocklybench will rename all the block
occurrences in all places, including the toolbox and genera-
tors editor. Also, the resulting JavaScript code that creates
the block can be inspected in the Factory Code window in
the Generated code panel (bottom-right Figure 2).

Toolbox Editor. This editor supports two types of tool-
box layouts categorized and uncategorized. The first is the
traditional Blockly toolbox, where blocks are grouped into
categories, while the second does not have any categories;
the blocks are directly displayed in the toolbox. In both cases,
the blocks shown in the toolbox are selected from a drop-
down list containing all the blocks defined in the Blocks
editor. In particular, developers can define a name and color
for each category for the categorized toolbox.
When a toolbox contains nested blocks, it is possible to

define some default values for the fields by using the blocks
from the Special category in the Toolbox Editor. Moreover, it
is possible to create getters and setters via the Variables cate-
gory and to define additional labels and gaps in the toolbox.

Finally, Blocklybench allow developers to see the JSON
code of the toolbox in the Toolbox JSON window in the
Generated code panel (bottom-right Figure 2).

Final Editor. This editor (top-right Figure 2) is used to
show a preview of the editor that has been described in
the Block and Toolbox Editor. Its primary value is to allow
developers to see and verify the layout and implementation
of the different blocks and categories in the block-based
environment. More importantly, this editor is live updated to
reflect the most up-to-date information. Adding blocks to the
Final Editor canvas will also trigger the code generation as
defined by the Generator Editor that is shown in the Concrete
Code windows of the Generated code panel.

Generator Editor. This editor is used to define a code
generator for each block. One generator block is needed per
block type and language. The generator per block is built
up using string templates combined with placeholders. The
placeholders are Field, Statements, Values, and Comments,
and each of them contains a drop-down menu with their
available values from the block definition.

Statements are indented by default, but developers can
change this behavior by unchecking the indent property on
the statement block.

There are five extra placeholders available for code gener-
ation.

The Block Type is used for obtaining the current block’s
type.

When developers are working with statements explicitly
with data languages, they are often required to know the
number of statements (length) and the index of the current
statement; therefore, Blocklybench offers the length of and
index of this child blocks.

65

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Mauricio Verano Merino and Koen van Wijk

In addition, Blocklybench offers a generate_javascript
block.

This block has a text field in which developers can write
JavaScript code, which is directly added to the generated
code. Probably good to check the generated code directly as
it is straightforward to generate incorrect code. All the gener-
ated code can be inspected in the Code Generation window
within the Generated code panel (bottom-right Figure 2).
This option allows developers to use any Blockly JavaScript
code directly in their code generators.

Generated code. This panel (bottom-right Figure 2) con-
tains fivewindowswith the generated code from the different
artifacts developed with Blocklybench. This panel’s intended
use is to give early feedback on the resulting code generation
based on the usage of the Final Editor and the different gen-
erators. It is essential to mention that Blocklybench’s allows
developers to define different code generators in different
languages. Therefore, the language generator displayed in
the Generate code panel can be switched by clicking the
drop-down menu in the navigation header; this menu shows
the names of all the code generators that have been defined
in the Generator Editor.
Factory Code: This window displays the JavaScript code to
create the new blocks. This code is executed on every change
to create the blocks in the Final Editor.
Concrete JSON: This window displays the JSON representa-
tion of the Final Editor.
Code Generation: This window displays the JavaScript of the
code generators. This code is also executed on every change
to create code in the Concrete Code window.
Toolbox JSON: This window displays the JavaScript to gener-
ate the toolbox. This code is also executed on every change
to create the Toolbox of the Final Editor.
Concrete Code: This window displays the resulting code cre-
ated by the selected code generator.

4.2 First Example

This running example is used to illustrate the Blocklybench’s
features described before, and to explain how they can be
used in practice [4].
Figure 3 shows an example of a single block block-based

environment implemented in Blocklybench, as it provides
an overview of the different editors. In this case the Block
Editor contains a single block called nice_new_block, and its
definition includes a title (TITLE) and a name (NAME). The
Toolbox Editor contains the most basic toolbox without cat-
egories with a single block listed, and both the toolbox and
the block are displayed in the Final Editor. The Generator
Editor contains the definition of a code generator for a lan-
guage called LANG. This generator prints out the content of
the NAME field inside the block followed by a colon (:) and

Figure 3. First block.

a newline followed by the statements. The generated code
can be inspected in the Concrete Code window within the
Generated code panel.

Below we present additional features offered in all editors
generated with Blocklybench.

4.3 Search

All editors have a search toolbox to quickly highlight its
definition across all editors. To achieve this, users should
left-click a block in the Final Editor, and Blocklybench will
highlight the block type in all the editors and consequently
will jump all editors to that block type definition.

4.4 Context Menu

When a user right-clicks a block a context menu with three
additional actions is displayed2. First, the Clean Up action is
useful when employing several blocks in an editor as quite a
lot of blocks are created the layout will clutter the developer’s
workspace. Therefore, this action organizes the blocks in the
workspace in such a way that they do not overlap each other
and the workspace is usable again. Secondly, there is the
Collapse blocks action, this works when developers want
to hide some blocks that are finished in order to have more
space to work on unfinished blocks and to free up some space
in the editors. Thirdly, a common task is to share the current
status of the editor. Here Blocklybench allows developers to
take screenshots of their editors and store them as a PNG
picture.

4.5 Save and Load

The navigation header (topmost part of Blocklybench) of-
fers several buttons to save and load editors. The save and
load buttons on the top save the state of all the editors:
Block, Toolbox, Generator, and Final Editor. It also creates
an editor.html file containing the Final Editor. There are

2We refer to it as additional actions because Blockly, by default, only acti-

vates some actions at the workspace level (e.g., undo and delete blocks)

66

Workbench for Creating Block-Based Environments SLE ’22, December 06ś07, 2022, Auckland, New Zealand

two options to save a block-based environment: either as a
zip file or as a folder with all the files directly to disk 3.
All editors are stored using a flat JSON format [23].

4.6 Load Examples

Saving is essential to make the editor persistent; therefore,
the counterpart loading is also necessary. Blocklybench of-
fers a mechanism for loading previously saved definitions.
There are four built-in languages (Basic, Google Workflow,
Smooth Voxel, and Fectar) available to load from the web-
site. The built-in languages include Basic that has blocks for
languages based on dictionaries, lists, and values, similar
to the ones we could find in JSON or YAML formats. The
other built-in languages are described in section 5. However,
users can also load their own languages by clicking the Load
Editor button.

4.7 Advanced: Copy Block

Different blocks (language constructs) might have a similar
structure. This is why it becomes handy to offer a functional-
ity that allows developers to reuse and tweak existing block
definitions for creating new blocks. Blocklybench allows de-
velopers to achieve this by allowing them to make a copy
of a block. To copy a block, developers have to right-click a
block in the Final Editor and select Create ... Copy (Figure 4).
This action creates a new block with its own code generators
(the same as the block it was copied from), and the block is
added to the toolbox below the original block.

Figure 4. Create block copy.

4.8 Advanced: Tool-Tips on Fields

Tool-tips are essential in a block-based environment to give
users in-context feedback. They can be placed both at the
block and the field level. To include a tool-tip at the block
level, developers can use the tool-tip field in the block def-
inition. While creating a tool-tip at the field level can be
achieved by adding a comment on the field in the Block
Editor as shown in Figure 5.

4.9 Advanced: Converting Field Types

When converting generic languages to more concrete ones
and specific constructs, we often converted text fields into

3This feature uses The File System Access API [31]

Figure 5. Defining tool-tips at the field level.

static or drop-down fields. Therefore, Blocklybench allows
this by right-clicking a block and selecting replace with drop-

down and replace with static text.

5 Case Studies

This section presents three case studies that we implemented
using Blocklybench, namely Fectar, Google Workflows, and
Smooth Voxel. All languages and the generated editors are
publicly available online (see sections below). Beneath, we
briefly describe each of the languages and present the result-
ing block-based editor.

5.1 Fectar Blocks

Fectar [17] is an Augmented Reality (AR), Virtual Reality
(VR), and Mixed Reality (MR) content management system
that includes a tool to build the Metaverse. In Fectar Stu-
dio fig. 6 end-users can create 3D spaces with several objects
or spots. Basic usage like "click on" to appear or disappear,

Figure 6. Fectar Studio.

rotation, and location of objects or spots are provided, but
sometimes extra behavior is needed in the 3D space. This
extra behavior needs to be programmed by developers using
JavaScript using Fectar Code spot. However, in this scenario,
users need to know both JavaScript and the Fectar API. Our
block-based environment creates a new block-based lan-
guage that enables these extra behaviors by dragging blocks
instead of writing textual JavaScript code. Since the syntax
is well-known to be an entry barrier for end-users [35], this
block-based environment lowers this barrier level for end-
users and is also an easy way to learn the Fectar API by
exploring the language constructs via the toolbar.

67

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Mauricio Verano Merino and Koen van Wijk

The definition of Fectar blocks using Blocklybench is avail-
able online [5], and the resulting block-based editor is avail-
able at [6].
Listing 1 shows a JavaScript code snippet that should be

typed; what it does is that when a spot is clicked, the position
is set to (0, 0.5, 1). Then, the information about the spot is
logged. In a traditional (textual) environment the developer
needs to understand the syntax of the onClick function and
that their parameter (eventParam) contains a field with the
spot. In the block-based world, this process is not required
since this information is available directly in the editor. Fig-
ure 7 shows the same function using a block-based notation.
With a block-based environment it is possible to drag and
drop the block to create the corresponding JavaScript.

function onClick(eventParams) {

var spot = eventParams.spot;

spot.position = new Vector3(0, 0.5, 1);

log(spot);

};

Listing 1. JavaScript code using Fectar API.

Figure 7. Fectar Blocks Editor.

5.2 Google Workflows

Google Workflows is a service that combines Google Cloud
services and APIs that soothe different development tasks
such as building reliable applications, processing automation,
and machine learning pipelines [22].
Google Workflow relies upon YAML files like the one

shown in Listing 2. This example first gets the current time
and, depending on the day of the week (Friday, Saturday
or Sunday, or weekdays), returns the corresponding string
(Almost weekend, Weekend, or Workday) [20].

This example shows several layers of syntax. One is the
YAML syntax, which seems easy, but knowing exactly when
to use indentation and/or ’-’ might be challenging. The next
layer is the scheme keys (e.g., call, args, result, next), and
some values in the dictionaries must match other steps, for
example conditionalSwitch.

The block-based editor Figure 8 helps reduce the complex-
ity of these layers since most syntax and semantics can be

encoded into blocks that will always be syntactically cor-
rect. Those blocks only contain the available keys. Also, a
drop-down field is provided with the names of the already
existing blocks; consequently, the ’conditionalSwitch’ value
can be selected.

The definition of Google Workflows blocks using Blockly-
bench is available online [7], and the resulting block-based
editor is available at [8].

main:

steps:

- get_current_time:

call: http.get

args:

url: https://bit.ly/3K353vc

result: currentTime

next: conditionialSwitch

- conditionialSwitch:

switch:

- condition: ${currentTime.body.dayOfTheWeek == "Friday"}

next: Friday

- condition: ${currentTime.body.dayOfTheWeek == "Saturday"

OR currentTime.body.dayOfTheWeek == "Sunday"}

next: Weekend

next: Workday

- Friday:

return: "Almost weekend"

- Weekend:

return: "Weekend!"

- Workday:

return: "Workday..."

Listing 2. Google Cloud Workflows example.

Additional help can be offered for the current blocks. For
instance, the condition block would benefit from helper
blocks because currently this is an input text and users can
still make mistakes. This shows that block-based environ-
ments can be built up iteratively; First, the basic blocks,
with free text (with still requires knowing some syntax),
and then developing more detailed blocks. For instance, the
condition value can be filled with new blocks and the args
values can have some defaults instead of free text.

5.3 Smooth Voxels

Smooth Voxels allows developers that lack blender skills to
create 3D models. It allows developers to transform voxel
models into low poly-style lookingmodels. Concrete, Smooth
Voxels works by averaging the vertices to obtain a smother
representation.
For instance, the code required for creating a 3D model

of an apple is shown in Listing 3. This code snippet is rela-
tively straightforward. First, it defined the properties of the
3D model (e.g., size, scale, and origin). Then, the materials
and the colors are defined. In particular, all colors have a
corresponding letter between ’A’ to ’F’; these letters are used
to create the 3D model layer by layer. The dash symbol (’-’)
is used to represent that no voxel is needed, and note that
material ’F’ is black and is only used in the top part, while
material ’E’ represents the brown color in the stem of the

68

Workbench for Creating Block-Based Environments SLE ’22, December 06ś07, 2022, Auckland, New Zealand

Figure 8. Google Workflows block-based editor.

Figure 9. Apple Voxel and Smooth.

apple, the remaining materials (’A’, ’B’, ’C’, and ’D’) give the
nice yellow-red appearance to the apple.

Similar to the GoogleWorkflow language Section 5.2, users
need to be familiar with the scheme shown in Listing 3; they
need to know the different properties and valid values for
each of them. Also, to define the colors of the different mate-
rials, users need to know the hexadecimal code of the colors
used. Therefore, the schema is simple, but it is error-prone.
To mitigate this, we believe that using a block-based environ-
ment will help users to define their 3D models because they
can choose the properties directly from the toolbox. Also,
they can set their values from only valid ranges or using
drop-down menus, and the block-based editor offers help to
the users via the tooltips and the links to the documentation.

Figure 10 shows the definition of an apple using the same
properties but now with block notation.
The definition of Smooth Voxels blocks using Blockly-

bench is available online [9], and the resulting block-based
editor is available at [10].

Our block-based editor offers two options for defining vox-
els. The first option uses plain text (using the same ASCII-art

syntax as the textual definition), and the second option uses
drop-down menus that solely display available and valid
color letters. The first and second options are less ideal due
to the font used, and that for every letter a dropdown needs
to be selected, respectively. For instance, Figure 11 shows
an example of the definition of the voxels for the apple. The
number before a voxel line represents the number of repeti-
tions of that segment.

size = 7

scale = 0.15 0.17 0.15

origin = -y

ao = 5 3

material lighting=smooth , roughness =0.25, fade=true ,

deform =3 colors=A:#C11 B:#F60 D:#000 C:#F93

material lighting=smooth , roughness=1, fade=true ,

deform =3 colors=E:#840 F:#000

voxels

------- --AAA -- --AAA -- --AAA -- ------- ------- -------

--AAA -- -BAAAA - -BAAAA - -BAAAA - -BAAAA - ------- -------

-BADAA - BAAAAAA BAAAAAA BAAAAAA -B---A- ------- -------

-BDDDA - BAAAAAA CAAAAAA CABAAAA -B-E-A- ---E--- ---FF--

-BBDBA - BAAAAAA CAAAAAA CABBAAA -C---A- ------- -------

--BBB -- -BAAAB - -CAAAB - -CAAAB - -CCBBB - ------- -------

------- --BBB -- --CCB -- --CCB -- ------- ------- -------

Listing 3. Textual definition of an apple [36].

Figure 10. Smooth Voxels with Blockly.

5.4 Effort

To have a better understanding of the size of the different
case studies (Section 5), we measured the number of blocks
required to define the language’s toolbox and language con-
structs (blocks), the resulting number of categories in the
toolbox and the number blocks, and the number of SLOCS of

69

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Mauricio Verano Merino and Koen van Wijk

Figure 11. Voxel definitions using block-based notation.

the resulting block-based editor. We manually measured the
number of blocks required for implementing the different
cases studies, and for measuring the SLOCs of the generated
block-based editors we used SonarQube [40].

Table 3 presents a summary of quantitative data we mea-
sured for each case study. The first column (Language) con-
tains the name of the language. Then, the following three
columns contain information related to the language defi-
nition. This includes the number of Blocklybench’s blocks
required to define the toolbox (Toolbox), the language con-
structs (Blocks), and their code generators (Code Gen.) Fi-
nally, the remaining columns display the information related
to the generated editor (Editor). This part is divided into two;
the first two columns, Categories and Blocks, contain the
number of categories and blocks of the language, respec-
tively. Finally, the last three columns show the number of
generated Lines of Code (SLOC) of each block-based editor
divided into three parts, the HTML, the JS, and the sum of
the two.
For all the case studies, the number of HTML SLOCs is

identical because Blocklybench generates the same sample
web application; what differs from each block-based envi-
ronment are the JavaScript files. The JavaScript (JS) code
represents the block’s definition using Blockly’s API. The
Total column in Table 3 represents the sum of the SLOCs of
the HTML and the JS columns. On average each generated
block-based environment contains around 3.9k SLOCs. As
we observe, the size of the generated editors is consistent.
Most of the code is related to the definition of the blocks,
then the code generator and finally the toolbox.

6 Discussion

As explained throughout the paper, Blocklybench offers an
interesting block-based mechanism for creating block-based
environments and their code generators. In the following
paragraphs, we present some of the limitations of the cur-
rent approach and possible ways in which further research
projects can address them. Blocklybench offers a great way
to develop block-based environments and gives options to de-
fine all block-specific characteristics, including color and lay-
out. However, language developersmust keep in sync the link

between the blocks and code generation of the text languages,
which is something that other approaches like Kogi [47] and
S/Kogi [46] offer for free. One way to mitigate this could be
to integrate Blocklybench’s approach with Kogi or S/Kogi, so
that the input grammars used in these approaches could con-
tain annotations to describe block-specific aspects and that
the grammar can be edited using Blocklybench’s notation.
Blocklybench allows developers to create different types

of languages, including programming and data languages.
However, in the current evaluation (Section 5) we have imple-
mented only one programming language Section 5.1; while
we have implemented several data languages Sections 5.2
and 5.3. Based on our results and experience, and the re-
sults from other research projects [46, 47], the block-based
metaphor works best for Domain-Specific Languages (DSLs)
and data languages. Additional research is required to deter-
mine whether this metaphor is also beneficial for program-
ming languages beyond the realm of programming educa-
tion.
Also, in this direction, when data languages are created

with Blocklybench there is a need for parsing existing data
files (e.g., JSON or YAML files) so that they can be edited
using the newly created block-based editor. Currently, only
the Basic language [2] supports parsing lists and dictionaries,
which are common constructs in data languages. As men-
tioned, developing block-based environments iteratively is
one of Blocklybench’s key strengths. Therefore, maintaining
an abstract parser for data languages (JSON and YAML) de-
rived from the Basic language with newly created blocks is
an open question for further research. One possible solution
could be that the editor keeps track of the language changes
and assists developers in this transition.
Even though Blocklybench seems relatively easy to use,

only a few users have tested it, and only around 15 languages
have been developed. Based on their usage, they have re-
ported some usability issues. For instance, some users in-
dicated that the number of windows on the screen is over-
whelming and sometimes intimidating. To mitigate this, we
plan to develop a Visual Studio Code extension to control
and manage the different windows better. Moreover, some
fields within a block come with validators (type checkers) for

70

Workbench for Creating Block-Based Environments SLE ’22, December 06ś07, 2022, Auckland, New Zealand

Table 3. Number of blocks required for implementing the case studies using Blocklybench, and the number of Lines of Code
(SLOC) of the generated block-based editors.

Language
Lang. Def. Editor

Toolbox Blocks Code Gen. Categories Blocks HTML** JS** Total**

Fectar 34 232 131 8* 26* 19 3721 3740
Google Workflow 17 332 116 2 14 19 4163 4182
Smooth Voxel 27 228 145 4 22 19 3889 3908

*An additional block is available for defining variables.

**This measurements are in SLOCs.

common data types (e.g., number range and precision) that
improve the end-users overall experience. However, Blockly-
bench does not support the definition of new validators or
mutators. Supporting this might be beneficial for the creation
and usage of new blocks.
Currently, as shown in Section 5.4, Blocklybench gener-

ated block-based environments are one (simple) static HTML
page and a JavaScript file that contains the whole definition
of the block-based editor, including code generators and tool-
box. This can be turned into a more robust web application,
including support for NPM, UNPKG, React, or as a Visual
Studio Code extension. Likewise, Blocklybench’s generated
languages do not support collaboration features. This means
that several users cannot work on the same application at
the same time. This is an interesting and valuable feature to
collaboratively create block-based applications in real time
between various users.
Finally, Blocklybench supports blocks localization using

string tables, in the same way that Blockly [21]. However,
when a new user’s language is added, Blocklybench does not
create nor identify an editor that keeps track of the newly
created messages. Existing Blockly localization mechanisms
offer support mainly for programming languages but lack
support for strings, which are essential for block-based data
languages.

7 Related Work

Block-based environments are part of the graphical editors or
visual languages family. Currently, there is a lack of develop-
ment tools for creating block-based environments [13]. One
of the strengths of visual languages is that they make pro-
gramming easier for beginners than textual languages [26].
Most developers have to make their block-based implemen-
tations using general-purpose programming languages with
little or no support for language definitions. Blocklybench
contributed to the research line on programming environ-
ment generation [12, 15, 16, 25, 34, 38, 45]. In this research
line, there are a couple of approaches to using language work-
benches for implementing block-based environments. For
instance, Kogi [47] takes new or existing textual languages
and generates a block-based interface from this definition.

Likewise, S/Kogi [46] follows a similar approach, but it in-
cludes a set of heuristics that improve the usability of gen-
erated block-based environments. Within the block-based
world, Blockly is the most common tool and it only offers
the block factory [19] interface, which allows users to create
custom blocks and their toolbox. However, this tool does not
allow developers to directly create code generators for these
languages using the blocks notation nor to keep the blocks,
toolbox and code generation in sync during development.
Model-Driven Software Engineering (MDSE) focuses on

creating domain models for software development. Eclipse
Modeling Framework (EMF) [11] is one of the most popular
frameworks for MDSE, and it relies on a meta-model editor,
which is a visual editor for defining domain models using
a graphical notation. This is a similar approach to the one
proposed in Section 4, but we focused on offering a block-
based notation with block-based-specific features.

8 Conclusions & Future Work

Block-based environments are great tools that help end-users
achieve programming tasks by lowering the entry barrier
and guiding them in creating their programs. However, their
usage has been mostly for teaching programming to chil-
dren, and their implementation is mostly in an ad-hoc fash-
ion. In this paper, we present Blocklybench, which is a tool
that helps developers to create their block-based environ-
ments using blocks. Therefore, it is possible to create new
block-based environments with a block-based environment.
However, this does not guarantee a correct and successful
block-based language because careful language design is
required [44].

Nevertheless, block-based environments development still
requires effort, particularly experience and knowledge of
language design. However, Blocklybench’s approach offers a
high-level language description of these languages that also
use the block-based metaphor. Also, its immediate feedback
gives developers ways of verifying and quickly testing with
final users whether the environment fits the business needs.
There are several points to be addressed in further re-

search. For instance, adding support for fine-grained features

71

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Mauricio Verano Merino and Koen van Wijk

when defining blocks (e.g., set moveable, deletable and ed-
itable properties at the block level [43]). In the same direction,
supporting field verification for non-basic data types would
benefit end-users. Also, it is helpful for existing block-based
environment that their definitions or definitions from exist-
ing JSON/YAML schemes can be imported into Blocklybench
for further development.

Specialized language engineering technology like language
workbenches is powerful for creating and implementing
software languages. However, they lack support for block-
specific matters like the ones supported by Blocklybench.
Therefore, bridging language engineering tools like Kogi
with Blocklybench, would allow developers to take the bene-
fit of both worlds. On the one hand, the full implementation
of a language and all its components, and on the other hand,
tweaking and defining block-specific properties.

Finally, one of the main motivations and benefits of block-
based environments are the benefits for end-users; therefore,
we plan to conduct a user study to evaluate the usability of
Blocklybench and their generated editors.

References
[1] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn

Turbak. 2017. Learnable Programming: Blocks and Beyond. Commun.

ACM 60, 6 (2017), 72ś80. https://doi.org/10.1145/3015455

[2] Blocklybench. 2022. Basic Language. https://motar-242711.ew.

r.appspot.com/?editor=basic&load=1. https://motar-242711.ew.r.

appspot.com/?editor=basic&load=1 [Online, accessed 28 July 2022].

[3] Blocklybench. 2022. Blocklybench. https://motar-242711.ew.r.appspot.

com/. https://motar-242711.ew.r.appspot.com/ [Online, accessed 28

July 2022].

[4] Blocklybench. 2022. Blocklybench. https://motar-242711.ew.r.appspot.

com/?editor=first&load=1. https://motar-242711.ew.r.appspot.com/

?editor=first&load=1 [Online, accessed 28 July 2022].

[5] Blocklybench. 2022. Fectar Code Blocks. https://motar-242711.ew.

r.appspot.com/?editor=fectar&load=1. https://motar-242711.ew.r.

appspot.com/?editor=fectar&load=1 [Online, accessed 28 July 2022].

[6] Blocklybench. 2022. Fectar Code Blocks. https://motar-242711.ew.

r.appspot.com/editors/fectar/editor.html. https://motar-242711.ew.

r.appspot.com/editors/fectar/editor.html [Online, accessed 28 July

2022].

[7] Blocklybench. 2022. Fectar Code Blocks. https://motar-242711.

ew.r.appspot.com/?editor=google_workflow&load=1. https://motar-

242711.ew.r.appspot.com/?editor=google_workflow&load=1 [Online,

accessed 28 July 2022].

[8] Blocklybench. 2022. Google Workflows Editor. https://motar-

242711.ew.r.appspot.com/editors/google_workflow/editor.html.

https://motar-242711.ew.r.appspot.com/editors/google_workflow/

editor.html [Online, accessed 28 July 2022].

[9] Blocklybench. 2022. Smooth Voxels Blocks. https://motar-242711.

ew.r.appspot.com/?editor=svox&load=1. https://motar-242711.ew.r.

appspot.com/?editor=svox&load=1 [Online, accessed 28 July 2022].

[10] Blocklybench. 2022. Smooth Voxels Blocks Editor. https://motar-

242711.ew.r.appspot.com/editors/svox/editor.html. https://motar-

242711.ew.r.appspot.com/editors/svox/editor.html [Online, accessed

28 July 2022].

[11] Frank Budinsky, Stephen A. Brodsky, and Ed Merks. 2003. Eclipse

Modeling Framework. Pearson Education.
[12] Philippe Charles, Robert M. Fuhrer, Stanley M. Sutton, Evelyn Duester-

wald, and Jurgen Vinju. 2009. Accelerating the Creation of Cus-

tomized, Language-Specific IDEs in Eclipse. 44, 10 (2009), 191ś206.

https://doi.org/10.1145/1639949.1640104

[13] Enrique Coronado, Fulvio Mastrogiovanni, Bipin Indurkhya, and Gen-

tiane Venture. 2020. Visual Programming Environments for End-

User Development of intelligent and social robots, a systematic re-

view. Journal of Computer Languages 58 (2020), 100970. https:

//doi.org/10.1016/j.cola.2020.100970

[14] Shruti Dhariwal. 2019. BlockArt: Visualizing the ’Hundred Languages’

of Code in Children’s Creations. In Proceedings of the 2019 on Creativity

and Cognition (San Diego, CA, USA) (C&C ’19). ACM, 633ś639.

https://doi.org/10.1145/3325480.3326585

[15] Söderberg Emma and Hedin Görel. 2011. Building Semantic Editors

Using JastAdd: Tool Demonstration. (2011), 6 pages. https://doi.org/

10.1145/1988783.1988794

[16] S. Erdweg, T. v. d. Storm, M. Volter, L. Tratt, R. Bosman, W. R. Cook,

A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J. Molina, M.

Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, E.

Visser, K. v. d. Vlist, G. Wachsmuth, and J. v. d. Woning. 2015. Eval-

uating and comparing language workbenches: Existing results and

benchmarks for the future. Computer Languages, Systems & Structures

44 (2015), 24ś47. https://doi.org/10.1016/j.cl.2015.08.007

[17] Fectar. 2022. Fectar. https://www.fectar.com. https://www.fectar.com

[Online, accessed 25 July 2022].

[18] Google. 2020. Blockly. https://developers.google.com/blockly. https:

//developers.google.com/blockly [Online, accessed 25 July 2022].

[19] Google. 2020. Blockly block factory. https://blockly-demo.appspot.

com/static/demos/blockfactory/index.html. https://blockly-demo.

appspot.com/static/demos/blockfactory/index.html [Online, accessed

28 July 2022].

[20] Google. 2020. Google Cloud Platform. https://github.

com/GoogleCloudPlatform/workflows-samples/blob/main/

src/step_conditional_weekend.workflows.yaml. https:

//github.com/GoogleCloudPlatform/workflows-samples/blob/

main/src/step_conditional_weekend.workflows.yaml [Online,

accessed 28 July 2022].

[21] Google. 2020. Localize Blocks. https://developers.google.com/blockly/

guides/create-custom-blocks/localize-blocks. https://developers.

google.com/blockly/guides/create-custom-blocks/localize-blocks [On-

line, accessed 17 August 2022].

[22] Google. 2022. Google Workflows. https://cloud.google.com/workflows.

https://cloud.google.com/workflows [Online, accessed 28 July 2022].

[23] Blockly Group. 2022. Blockly json serialization and merg-

ing. https://groups.google.com/g/blockly/c/6lfkH-mSWdI/m/K25gHd_

oAAAJ. https://groups.google.com/g/blockly/c/6lfkH-mSWdI/m/

K25gHd_oAAAJ [Online, accessed 28 July 2022].

[24] Brian Harvey and Jens Monig. 2020. Snap! 4.1 Reference Manual.

https://github.com/cwi-swat/rascal-minijava. https://snap.berkeley.

edu/snap/help/SnapManual.pdf [Online, accessed 12 July 2021].

[25] Heering Jan and Klint Paul. 2000. Semantics of Programming Lan-

guages: A Tool-oriented Approach. SIGPLAN Not. 35, 3 (2000), 39ś48.

https://doi.org/10.1145/351159.351173

[26] Caitlin Kelleher and Randy Pausch. 2005. Lowering the Barriers to

Programming: A Taxonomy of Programming Environments and Lan-

guages for Novice Programmers. ACM Comput. Surv. 37, 2 (2005),

83ś137. https://doi.org/10.1145/1089733.1089734

[27] Andrew J. Ko, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary

Shaw, Susan Wiedenbeck, Robin Abraham, Laura Beckwith, Alan

Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, Joseph

Lawrance, and Henry Lieberman. 2011. The state of the art in end-user

software engineering. Comput. Surveys 43, 3 (2011), 1ś44. https:

//doi.org/10.1145/1922649.1922658

[28] Henry Lieberman, Fabio Paternò, Markus Klann, and VolkerWulf. 2006.

End-User Development: An Emerging Paradigm. Springer Netherlands,

Dordrecht, 1ś8. https://doi.org/10.1007/1-4020-5386-X_1

72

https://doi.org/10.1145/3015455
https://motar-242711.ew.r.appspot.com/?editor=basic&load=1
https://motar-242711.ew.r.appspot.com/?editor=basic&load=1
https://motar-242711.ew.r.appspot.com/?editor=basic&load=1
https://motar-242711.ew.r.appspot.com/?editor=basic&load=1
https://motar-242711.ew.r.appspot.com/
https://motar-242711.ew.r.appspot.com/
https://motar-242711.ew.r.appspot.com/
https://motar-242711.ew.r.appspot.com/?editor=first&load=1
https://motar-242711.ew.r.appspot.com/?editor=first&load=1
https://motar-242711.ew.r.appspot.com/?editor=first&load=1
https://motar-242711.ew.r.appspot.com/?editor=first&load=1
https://motar-242711.ew.r.appspot.com/?editor=fectar&load=1
https://motar-242711.ew.r.appspot.com/?editor=fectar&load=1
https://motar-242711.ew.r.appspot.com/?editor=fectar&load=1
https://motar-242711.ew.r.appspot.com/?editor=fectar&load=1
https://motar-242711.ew.r.appspot.com/editors/fectar/editor.html
https://motar-242711.ew.r.appspot.com/editors/fectar/editor.html
https://motar-242711.ew.r.appspot.com/editors/fectar/editor.html
https://motar-242711.ew.r.appspot.com/editors/fectar/editor.html
https://motar-242711.ew.r.appspot.com/?editor=google_workflow&load=1
https://motar-242711.ew.r.appspot.com/?editor=google_workflow&load=1
https://motar-242711.ew.r.appspot.com/?editor=google_workflow&load=1
https://motar-242711.ew.r.appspot.com/?editor=google_workflow&load=1
https://motar-242711.ew.r.appspot.com/editors/google_workflow/editor.html
https://motar-242711.ew.r.appspot.com/editors/google_workflow/editor.html
https://motar-242711.ew.r.appspot.com/editors/google_workflow/editor.html
https://motar-242711.ew.r.appspot.com/editors/google_workflow/editor.html
https://motar-242711.ew.r.appspot.com/?editor=svox&load=1
https://motar-242711.ew.r.appspot.com/?editor=svox&load=1
https://motar-242711.ew.r.appspot.com/?editor=svox&load=1
https://motar-242711.ew.r.appspot.com/?editor=svox&load=1
https://motar-242711.ew.r.appspot.com/editors/svox/editor.html
https://motar-242711.ew.r.appspot.com/editors/svox/editor.html
https://motar-242711.ew.r.appspot.com/editors/svox/editor.html
https://motar-242711.ew.r.appspot.com/editors/svox/editor.html
https://doi.org/10.1145/1639949.1640104
https://doi.org/10.1016/j.cola.2020.100970
https://doi.org/10.1016/j.cola.2020.100970
https://doi.org/10.1145/3325480.3326585
https://doi.org/10.1145/1988783.1988794
https://doi.org/10.1145/1988783.1988794
https://doi.org/10.1016/j.cl.2015.08.007
https://www.fectar.com
https://www.fectar.com
https://developers.google.com/blockly
https://developers.google.com/blockly
https://developers.google.com/blockly
https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
https://github.com/GoogleCloudPlatform/workflows-samples/blob/main/src/step_conditional_weekend.workflows.yaml
https://github.com/GoogleCloudPlatform/workflows-samples/blob/main/src/step_conditional_weekend.workflows.yaml
https://github.com/GoogleCloudPlatform/workflows-samples/blob/main/src/step_conditional_weekend.workflows.yaml
https://github.com/GoogleCloudPlatform/workflows-samples/blob/main/src/step_conditional_weekend.workflows.yaml
https://github.com/GoogleCloudPlatform/workflows-samples/blob/main/src/step_conditional_weekend.workflows.yaml
https://github.com/GoogleCloudPlatform/workflows-samples/blob/main/src/step_conditional_weekend.workflows.yaml
https://developers.google.com/blockly/guides/create-custom-blocks/localize-blocks
https://developers.google.com/blockly/guides/create-custom-blocks/localize-blocks
https://developers.google.com/blockly/guides/create-custom-blocks/localize-blocks
https://developers.google.com/blockly/guides/create-custom-blocks/localize-blocks
https://cloud.google.com/workflows
https://cloud.google.com/workflows
https://groups.google.com/g/blockly/c/6lfkH-mSWdI/m/K25gHd_oAAAJ
https://groups.google.com/g/blockly/c/6lfkH-mSWdI/m/K25gHd_oAAAJ
https://groups.google.com/g/blockly/c/6lfkH-mSWdI/m/K25gHd_oAAAJ
https://groups.google.com/g/blockly/c/6lfkH-mSWdI/m/K25gHd_oAAAJ
https://github.com/cwi-swat/rascal-minijava
https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://doi.org/10.1145/351159.351173
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1007/1-4020-5386-X_1

Workbench for Creating Block-Based Environments SLE ’22, December 06ś07, 2022, Auckland, New Zealand

[29] Mauricio Verano Merino and Tijs van der Storm. 2020. cwi-swat/kogi:

Kogi 0.1.0. https://doi.org/10.5281/zenodo.4033220

[30] Luke Moors and Robert Sheehan. 2017. Aiding the Transition from

Novice to Traditional Programming Environments. In Proceedings

of the 2017 Conference on Interaction Design and Children (Stanford,

California, USA) (IDC ’17). ACM, 509ś514. https://doi.org/10.1145/

3078072.3084317

[31] Mozilla. 2022. File SystemAccess API. https://developer.mozilla.org/en-

US/docs/Web/API/File_System_Access_API. https://developer.mozilla.

org/en-US/docs/Web/API/File_System_Access_API [Online, accessed

28 July 2022].

[32] Brad A. Myers, Andrew J. Ko, and Margaret M. Burnett. 2006. Invited

Research Overview: End-User Programming. In CHI ’06 Extended Ab-

stracts on Human Factors in Computing Systems (Montréal, Québec,

Canada) (CHI EA ’06). ACM, 75ś80. https://doi.org/10.1145/1125451.

1125472

[33] Donald A. Norman. 2002. The Design of Everyday Things. Basic Books,

Inc.

[34] Klint Paul. 1993. A Meta-Environment for Generating Programming

Environments. ACM Transactions on Software Engineering and Method-

ology (TOSEM) 2, 2 (1993), 176ś201. https://doi.org/10.1145/151257.

151260

[35] Arnold Pears, Stephen Seidman, Lauri Malmi, LindaMannila, Elizabeth

Adams, Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A

Survey of Literature on the Teaching of Introductory Programming.

In Working Group Reports on ITiCSE on Innovation and Technology

in Computer Science Education (Dundee, Scotland) (ITiCSE-WGR ’07).

Association for Computing Machinery, New York, NY, USA, 204ś223.

https://doi.org/10.1145/1345443.1345441

[36] Smooth Voxel Playground. 2022. Smooth Voxel Playground. https:

//svox.glitch.me/playground.html. https://svox.glitch.me/playground.

html [Online, accessed 28 July 2022].

[37] Thomas W. Price and Tiffany Barnes. 2015. Comparing Textual and

Block Interfaces in a Novice Programming Environment. In Proceed-

ings of the Eleventh Annual International Conference on International

Computing Education Research (Omaha, Nebraska, USA) (ICER ’15).

ACM, 91ś99. https://doi.org/10.1145/2787622.2787712

[38] Thomas Reps and Tim Teitelbaum. 1984. The Synthesizer Generator.

(1984), 42ś48. https://doi.org/10.1145/800020.808247

[39] Mitchel et al. Resnick. 2009. Scratch: Programming for All. Commun.

ACM 52, 11 (2009), 60ś67.

[40] SonarSource SA. 2008. SonarQube. https://www.sonarqube.org. [On-

line, accessed 16 August 2022].

[41] Mohamed Aymen Saied, Ali Ouni, Houari Sahraoui, Raula Gaikovina

Kula, Katsuro Inoue, and David Lo. 2018. Improving reusability of

software libraries through usage pattern mining. Journal of Systems

and Software 145 (2018), 164ś179. https://doi.org/10.1016/j.jss.2018.

08.032

[42] Andrew Stratton, Chris Bates, and Andy Dearden. 2017. Quando:

Enabling Museum and Art Gallery Practitioners to Develop Interactive

Digital Exhibits. In End-User Development. Springer, 100ś107.

[43] Blockly team. 2022. Create custom blocks: Per-block config-

uration. https://developers.google.com/blockly/guides/create-

custom-blocks/define-blocks?hl=en#per-block_configuration.

https://developers.google.com/blockly/guides/create-custom-

blocks/define-blocks?hl=en#per-block_configuration [Online,

accessed 25 July 2022].

[44] Blockly team. 2022. Custom Blocks: Style Guide. https://developers.

google.com/blockly/guides/create-custom-blocks/style-guide?hl=en.

https://developers.google.com/blockly/guides/create-custom-

blocks/style-guide?hl=en [Online, accessed 25 July 2022].

[45] Mark G.J. van den Brand, Arie van Deursen, Jan Heering, Hayco A.

de Jong, Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen,

Pieter A. Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and
Joost Visser. 2001. The ASF+SDF Meta-Environment: A Component-

Based Language Development Environment. Electronic Notes in The-

oretical Computer Science 44, 2 (2001), 3ś8. https://doi.org/10.1016/

S1571-0661(04)80917-4 LDTA’01, First Workshop on Language De-

scriptions, Tools and Applications (a Satellite Event of ETAPS 2001).

[46] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert

Hirschfeld, and Jurgen J. Vinju. 2021. Getting Grammars into Shape

for Block-Based Editors. In Proceedings of the 14th ACM SIGPLAN

International Conference on Software Language Engineering (Virtual,

USA) (SLE 2021). ACM, 12 pages. https://doi.org/10.1145/3486608.

3486908

[47] Mauricio Verano Merino and Tijs van der Storm. 2020. Block-Based

Syntax from Context-Free Grammars. In Proceedings of the 13th ACM

SIGPLAN International Conference on Software Language Engineering

(Virtual, USA) (SLE 2020). ACM, 283ś295. https://doi.org/10.1145/

3426425.3426948

[48] Mauricio Verano Merino, Jurgen Vinju, and Mark van den Brand. 2021.

What you always wanted to know but could not find about block-based

environments. (2021). https://arxiv.org/abs/2110.03073 [Under review

at ACM Computing Surveys].

[49] R. Vinayakumar, K. Soman, and P. Menon. 2018. CT-Blocks: Learning

Computational Thinking by Snapping Blocks. In 2018 9th International

Conference on Computing, Communication and Networking Technologies

(ICCCNT). 1ś7. https://doi.org/10.1109/ICCCNT.2018.8493669

[50] David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang

Li, David C. Shepherd, and Diana Franklin. 2018. Evaluating CoBlox:

A Comparative Study of Robotics Programming Environments for

Adult Novices. In Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM,

366:1ś366:12. https://doi.org/10.1145/3173574.3173940

[51] David Weintrop and Uri Wilensky. 2018. How block-based, text-based,

and hybrid block/text modalities shape novice programming practices.

International Journal of Child-Computer Interaction 17 (2018), 83ś92.

https://doi.org/10.1016/j.ijcci.2018.04.005

[52] David Wolber, Harold Abelson, and Mark Friedman. 2015. Democratiz-

ing Computingwith App Inventor. GetMobile: Mobile Comp. and Comm.

18, 4 (Jan. 2015), 53ś58. https://doi.org/10.1145/2721914.2721935

73

https://doi.org/10.5281/zenodo.4033220
https://doi.org/10.1145/3078072.3084317
https://doi.org/10.1145/3078072.3084317
https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API
https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API
https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API
https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API
https://doi.org/10.1145/1125451.1125472
https://doi.org/10.1145/1125451.1125472
https://doi.org/10.1145/151257.151260
https://doi.org/10.1145/151257.151260
https://doi.org/10.1145/1345443.1345441
https://svox.glitch.me/playground.html
https://svox.glitch.me/playground.html
https://svox.glitch.me/playground.html
https://svox.glitch.me/playground.html
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/800020.808247
https://www.sonarqube.org
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1016/j.jss.2018.08.032
https://developers.google.com/blockly/guides/create-custom-blocks/define-blocks?hl=en#per-block_configuration
https://developers.google.com/blockly/guides/create-custom-blocks/define-blocks?hl=en#per-block_configuration
https://developers.google.com/blockly/guides/create-custom-blocks/define-blocks?hl=en#per-block_configuration
https://developers.google.com/blockly/guides/create-custom-blocks/define-blocks?hl=en#per-block_configuration
https://developers.google.com/blockly/guides/create-custom-blocks/style-guide?hl=en
https://developers.google.com/blockly/guides/create-custom-blocks/style-guide?hl=en
https://developers.google.com/blockly/guides/create-custom-blocks/style-guide?hl=en
https://developers.google.com/blockly/guides/create-custom-blocks/style-guide?hl=en
https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3426425.3426948
https://arxiv.org/abs/2110.03073
https://doi.org/10.1109/ICCCNT.2018.8493669
https://doi.org/10.1145/3173574.3173940
https://doi.org/10.1016/j.ijcci.2018.04.005
https://doi.org/10.1145/2721914.2721935

	Abstract
	1 Introduction
	2 Developing Editors for Data Languages
	3 Developing Block-Based Environments
	3.1 Libraries
	3.2 Extending Existing Environments
	3.3 Using Language Workbenches

	4 Blocklybench
	4.1 Features
	4.2 First Example
	4.3 Search
	4.4 Context Menu
	4.5 Save and Load
	4.6 Load Examples
	4.7 Advanced: Copy Block
	4.8 Advanced: Tool-Tips on Fields
	4.9 Advanced: Converting Field Types

	5 Case Studies
	5.1 Fectar Blocks
	5.2 Google Workflows
	5.3 Smooth Voxels
	5.4 Effort

	6 Discussion
	7 Related Work
	8 Conclusions & Future Work
	References

