
Making the Invisible Visible in Computational
Notebooks

Mauricio Verano Merino
Vrije Universiteit Amsterdam

Amsterdam, The Netherlands
m.verano.merino@vu.nl

L. Thomas van Binsbergen
University of Amsterdam

Amsterdam, The Netherlands
ltvanbinsbergen@acm.org

Mazyar Seraj
Eindhoven University of Technology

Eindhoven, The Netherlands
m.seraj@tue.nl

Abstract—Notebooks are increasingly popular programming
tools adopted by a diverse range of users, including professional
and novice users, from various fields not necessarily skilled
in software engineering, to experiment with programming and
develop software. Notebooks are often used within interactive
and exploratory programming settings; however, some of their
main use cases are not naturally supported by their design.
For example, users can only get insights into the program’s
state by executing program fragments and updating one’s mental
model. This paper discusses the possibility of defining widgets to
improve notebooks by providing direct insights into the program
state. The widgets are developed upon previous work in which
a novel approach to incremental programming is suggested
based on the notion of an exploring interpreter. As example,
we present widgets for visualizing execution history and variable
assignments, thereby reducing the cognitive load on users.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

End-user development (EUD) is a human-computer inter-
action field in which methods and technologies are studied
to enable users to extend or customize their software [1].
EUD has received much attention in recent years due to its
focus on empowering non-professional programmers, from
various domains to create software. There are different ways to
support EUD, such as the development of software languages
(e.g., high-level programming languages and domain-specific
languages), development tools (e.g., IDEs, REPLs, and com-
putational notebooks), and development frameworks. There is
an enormous potential for EUD since end-users significantly
outnumber professional programmers [2].

Computational notebooks are cell-based documents that al-
low end-users to interleave prose, code, and results in a single
document [3]. Notebooks have become popular in various
disciplines such as mathematics, data science, and education.
They lower the entry barrier to programming for novices [4],
compared to traditional IDEs or plain-text editors employed by
professional programmers. There are more than 60 notebook
platforms [5], with the most popular provided by the Jupyter
project [6].

Although notebooks offer manifold features for end-users,
little attention has been paid to displaying feedback of the
notebook’s state [7] and they miss some valuable features
offered by traditional IDEs, such as debugging. These features
might empower end-users further, when available in a user-
friendly manner.

This paper presents the benefits of using a so-called ‘explor-
ing interpreter’ as the back-end for notebooks and explains
how to develop interactive widgets interacting with an ex-
ploring interpreter. An exploring interpreter is a bookkeeping
device on top of an existing interpreter that keeps track of pro-
gram state by maintaining an execution graph of reached states
and allows reverting to previous states to explore alternative
paths [8], [9]. This paper presents initial results of a study
into the extent to which exploring interpreters are sufficient
to support exploratory styles of programming in programming
environments for end-users. As examples widgets we discuss
a visualization of the execution graph and a variable watcher,
both helping the end-user visualize the program state to better
predict the effects of subsequent code executions.

II. WIDGETS IN COMPUTATIONAL NOTEBOOKS

We use the word ‘widget’ to refer to an interactive GUI
component capable of displaying the program state and en-
abling the user to manipulate the program state through user-
actions. This section presents two widgets, an execution graph
widget, and a variable watcher widget. These widgets are
developed on top of a notebook interface based on an exploring
interpreter. Therefore, the widgets have access to all the effects
produced by executing a code snippet, represented as the
difference between the configurations before and after the
execution.

The Calc language is a tiny calculator language, and it is
used to illustrate the use and benefits of developing widgets
on top of an exploring interpreter.

The code snippet below presents the definition of the con-
figuration for the Calc language; it encapsulates the effects that
must be stored after executing a valid program. More precisely,
this configuration contains the environment (env), the possible
output produced by the interpreter (output), and the result
of evaluating the current code snippet (val). The environment
env stores all available variables in a dictionary that uses the
variables’ names as keys and the variables’ content as values.

data Config =
config(Env env, list[int] output, int val);

A. Execution Graph

After executing a code fragment REPLs and notebooks
present program output and some also present a summary of
the (other) effects of the execution to the programmer, thereby

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 S
ym

po
si

um
 o

n
V

is
ua

l L
an

gu
ag

es
 a

nd
 H

um
an

-C
en

tri
c

C
om

pu
tin

g
(V

L/
H

C
C

) |
 9

78
-1

-6
65

4-
42

14
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
L/

H
C

C
53

37
0.

20
22

.9
83

31
48

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 02,2022 at 20:54:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Resulting execution graph for the Calc language with a single
execution path from the root node (left) and the execution graph using an
alternative path obtained from selecting a previous node as the current node
(right).

enabling the programmer to update their mental model of
the program state and making predictions about the effects
of the next code fragment [8]. In our notebooks based on
exploring interpreters, the effects of code executions mani-
fest as changes to the ‘current configuration’. The exploring
interpreter maintains version history over configurations by
storing configurations in a graph structure. The execution
graph widget provides a visual representation of this execution
graph. In the execution graph (see Figure 1), nodes repre-
sent configurations resulting from executing code snippets
(programs), and the edges represent program executions. The
effect of a program, labelling an edge, can then be defined
as the difference between the target and source configuration
of the edge. The widget enables users to ‘travel in time’
by selecting a previously encountered configuration as the
execution context for the code cell executed next.

When a new notebook is created, the execution graph has
a single node (root node), representing the initial (empty)
configuration, and it has no edges. When users execute a
code snippet, the interface receives the snippet and the current
configuration. The notebook interface then calls the exploring
interpreter to evaluate the snippet and return an updated
configuration with all the effects produced. Currently, the node
labels display the configuration’s id in the execution graph. To
improve the execution graph’s readability, its edges are labeled
with the corresponding cell number, and the node representing
the current configuration is highlighted in green, as shown in
Figure 1. Each execution creates an edge in the graph from
the current configuration to an updated configuration. If the
updated configuration is the same as an existing one, no new
node is created, only the edge connecting the nodes, but a
node is created if the new configuration does not exist in the
graph.

The left-hand side of Figure 1 shows an example of a Calc
notebook containing two code cells. The first one assigns the
value 1 to a variable x. Hence, the execution graph creates
a node and an edge from the root node (initial configuration)
to the new node (configuration obtained after executing the
first cell). Then, the second cell assigns the value of the
expression x+5 to a variable y. Since this is the latest
execution, the last node is highlighted in green as the current

Fig. 2. Variable watcher for the Calc language. Its information is always up-
to-date because it is updated when the underlying interpreter’s state changes
its execution context.

node (configuration). However, the user has found that the
value of y is incorrect, and instead of x+5 should be x+3. To
make this change, the user clicks the second node (the result
of executing the first cell) in the execution graph to use that
configuration as the current one. After this, the user changes
y and executes the second cell again. As a result, the current
node has edges pointing to two nodes, the old one and the
new one, as shown on the right-hand side of Figure 1. If users
want to try a different alternative, they can change the current
configuration to one of the older configurations, as explained
earlier.

B. Variable Watcher

The execution graph widget discussed in the previous sec-
tion is a powerful tool that, besides exploratory programming,
has the potential to reveal the full execution state and history
to the user. In this section, we discuss the variable watcher
widget as an example of a more fine-grained widget providing
insights into the current execution state. The variable watcher
allows users to read the assignments made to variables, includ-
ing information about assigned objects (e.g., global variables)
and the types or sizes of variables. This widget is useful to end-
users to mitigate commons mistakes, such as variable duplica-
tion, related to otherwise hidden program states. The current
widget (Figure 2) can be extended to become an interactive
GUI, following prior work, in which users get the flexibility
to create/edit programs using both code and GUI [10], [11].
To support this flexibility, coordination between code/GUI
is required, making it necessary to have a common shared
underlying state [11]. For instance, the variable watcher can be
extended to become interactive and allows users to use CRUD
operations. This provides a different interactive interface for
end-users, which the underlying exploring interpreter naturally
supports, yet this is out of this paper’s scope.

III. CONCLUSION & FUTURE WORK

This work presents the initial results from a study into novel
features that support exploratory styles of programming in
computational notebooks intended in particular for end-user
development and domain-specific language users. In this study,
the features are supported by so-called exploring interpreters
that maintain execution history. This paper has reported on
the development of two GUI widgets: a visualization of
the execution graph and a variable watcher. Future work is
to describe additional general-purpose and domain-specific
widgets based on exploring interpreters to be evaluated with
the Cognitive Dimensions Framework [12], [13] and user tests.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 02,2022 at 20:54:58 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENTS

The work in this paper has been partially supported by the
Kansen Voor West EFRO project (KVW00309) AMdEX Field-
lab and the province of Noord-Holland, and has been executed
as part of the Agile Language Engineering collaboration1.

REFERENCES

[1] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, End-User Develop-
ment: An Emerging Paradigm, pp. 1–8. Dordrecht: Springer Netherlands,
2006.

[2] D. J. Rough and A. Quigley, “End-user development of experience
sampling smartphone apps -recommendations and requirements,” Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 4, June 2020.

[3] M. Verano Merino, J. J. Vinju, and T. van der Storm, “Bacatá: Notebooks
for dsls, almost for free,” Art Sci. Eng. Program., vol. 4, no. 3, p. 11,
2020.

[4] A. Rule, Design and Use of Computational Notebooks. PhD thesis,
University of California San Diego, 2018.

[5] S. Lau, I. Drosos, J. M. Markel, and P. J. Guo, “The design space of
computational notebooks: An analysis of 60 systems in academia and
industry,” in 2020 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 1–11, 2020.

[6] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and J. development team, “Jupyter note-
books - a publishing format for reproducible computational workflows,”
in Positioning and Power in Academic Publishing: Players, Agents and
Agendas (F. Loizides and B. Scmidt, eds.), (Netherlands), pp. 87–90,
IOS Press, 2016.

[7] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik,
“What’s wrong with computational notebooks? pain points, needs, and
design opportunities,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, CHI ’20, (New York, NY, USA),
p. 1–12, Association for Computing Machinery, 2020.

[8] L. T. van Binsbergen, M. Verano Merino, P. Jeanjean, T. van der Storm,
B. Combemale, and O. Barais, A Principled Approach to REPL Inter-
preters, p. 84–100. New York, NY, USA: Association for Computing
Machinery, 2020.

[9] D. Frölich and L. T. van Binsbergen, “A generic back-end for exploratory
programming,” in The 22nd International Symposium on Trends in
Functional Programming (TFP 2021), vol. 12834 of LNCS, Springer,
2021.

[10] B. Hempel, J. Lubin, and R. Chugh, “Sketch-n-sketch: Output-directed
programming for svg,” in Proceedings of the 32nd Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’19, (New York,
NY, USA), p. 281–292, Association for Computing Machinery, 2019.

[11] M. B. Kery, D. Ren, F. Hohman, D. Moritz, K. Wongsuphasawat,
and K. Patel, “mage: Fluid moves between code and graphical work
in computational notebooks,” Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology, Oct 2020.

[12] T. R. G. Green and M. Petre, “Usability analysis of visual program-
ming environments: A ’cognitive dimensions’ framework,” J. Vis. Lang.
Comput., vol. 7, no. 2, pp. 131–174, 1996.

[13] T. Green and A. Blackwell, “Cognitive dimensions of information
artefacts: a tutorial,” in BCS HCI Conference, vol. 98, pp. 1–75, 1998.

1http://gemoc.org/ale/

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 02,2022 at 20:54:58 UTC from IEEE Xplore. Restrictions apply.

