
Projecting Textual Languages

Mauricio Verano Merino, Jur Bartels, Mark van den Brand, Tijs van
der Storm, and Eugen Schindler

Abstract One of the strengths of the Jetbrains MPS projectional language work-
bench is that it supports mixing different kinds of notations (graphical, tabular,
textual, etc.). Many existing languages, however, are fully textual and are defined
using grammar technology. To allow such languages to be used from within MPS,
language engineers have to manually recreate the syntax of a language using MPS
concepts. In this chapter, we present an approach to automatically convert grammar-
based languages to MPS languages, by mapping context-free grammars to MPS
concept hierarchies. In addition, parse trees of programs in those languages are
mapped to MPS models. As a result, MPS users can import textual languages and
their programs into MPS without having to write tedious boilerplate code. We have
implemented the approach in a tool, Rascal2MPS, which converts grammars in the
built-in grammar formalism of Rascal to MPS. Although the tool is specific for the
Rascal context, the underlying approach is generic and can be instantiated for other
grammar formalisms.We have evaluated Rascal2MPS by generating an importer for
a realistic programming language (ECMAScript 5). The results show that useable
MPS editors for such languages can obtained but that further research is needed to
improve their layout.

M. V. Merino (�) · J. Bartels · M. van den Brand
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: m.verano.merino@tue.nl; j.bartels@student.tue.nl; M.G.J.v.d.Brand@tue.nl

T. van der Storm
University of Groningen, Groningen, The Netherlands
e-mail: storm@cwi.nl

E. Schindler
Canon Production Printing, Venlo, The Netherlands
e-mail: eugen.schindler@cpp.canon

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. Bucchiarone et al. (eds.), Domain-Specific Languages in Practice,
https://doi.org/10.1007/978-3-030-73758-0_7

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73758-0_7&domain=pdf
mailto:m.verano.merino@tue.nl
mailto:j.bartels@student.tue.nl
mailto:M.G.J.v.d.Brand@tue.nl
mailto:storm@cwi.nl
mailto:eugen.schindler@cpp.canon
https://doi.org/10.1007/978-3-030-73758-0_7

198 M. V. Merino et al.

1 Introduction

Language workbenches [1] (LWBs) are IDEs that support engineers in the design
and development of software languages [2]. These tools are aimed to improve
and increase the adoption of Language-Oriented Programming (LOP). LOP is a
technique for solving software engineering problems through the use of multiple
domain-specific languages (DSLs) [3]. DSLs are small and simple languages
tailored to solve problems in a particular application domain [4]. There are two
types of DSLs, internal and external [3]. The first one reuses the concrete syntax
of the host language and its parser, much like a stylized library. An external DSL,
however, typically requires the implementation of a parser and compiler.

Jetbrains MPS is a projectional language workbench that obviates the need for
parsing and, as a result, allows the engineer to define DSLs with a multiplicity
of notations, varying from textual, and tabular, to diagrammatic, or prose-like.
MPS provides editor support that allows users to directly edit the abstract syntax
structures of a language rather than reconstructing such structure from the linear
sequences of characters entered in text editors.

Nevertheless, many existing languages are defined purely textually. For instance,
all mainstream programming languages are textual (e.g., Java, C#, Javascript etc.).
But many DSLs, like GNUMake, Graphviz, SQL, etc., are strictly textual languages
too. To make such existing languages available for (re)use from within MPS,
language engineers have to redefine the syntax of such languages using the concepts
and editor features of MPS, which is a tedious and error-prone endeavor.

In this chapter, we detail an approach to take an existing context-free grammar
(e.g., from a parser generator tool) of a textual language and convert it automatically
to MPS concept definitions. As a result, such languages can be imported into
MPS without having to write abstract syntax definitions by hand. Furthermore,
the approach supports loading parse trees of existing programs into automatically
generated MPS editors, so that they become available for reuse immediately.

Companies in the Eindhoven (The Netherlands) region (e.g., Canon Production
Printing and ASML) have been using DSLs for several years [5]. Some of these
companies use textual LWBs, projectional LWBs, or both, such as Canon Production
Printing. When companies are using both types of LWBs, it is often desired to
reuse existing textual languages within a projectional LWB and vice versa. If such
a reuse facility exists, companies will avoid the costs of reimplementing features
and maintaining the same functionality in different platforms. Likewise, developers
can be more productive from the engineering point of view and invest more time
in developing new features or improving existing ones. Finally, the reuse strategy
could reduce time to market for new products.

In this chapter, we present an approach toward bridging the gap between textual
and projectional LWBs, which has been implemented in the context of the Rascal
(textual) and MPS (projectional) language workbenches. Our Rascal2MPS [6] takes
a Rascal grammar and converts it to equivalent concept hierarchies and editor
definitions in MPS.

Projecting Textual Languages 199

The contributions of this chapter can be summarized as follows:

• A generic bridge between textual and projectional LWBs. Employing this bridge,
developers can obtain a projectional language in JetBrains MPS from a context-
free grammar written in Rascal.

• A mechanism to generate projectional editors from a context-free grammar. This
mechanism uses a set of pretty-printing heuristics that takes into account the
production rules’ structure.

• A tool to import existing programs written in a textual language as projectional
models of the generated language.

The structure of this chapter is as follows: in Sect. 2, we describe the motivation
that supports this work and the problem statement. Then, in Sect. 3, background
information about software language engineering is presented. In Sect. 4, we
present our solution and its architecture. Then, we evaluate the current approach
by comparing an ad hoc implementation of JavaScript against a generated version
(Sect. 5). In Sect. 6, we discuss the limitations of the current approach.We conclude
this chapter with related work and future research directions (Sects. 7 and 8).

2 Motivation

A DSL offers programming abstractions that are closer to domain requirements
than general programming languages [7]. Likewise, DSLs offer syntax closer to
the domain expert’s knowledge. DSLs have been around for a few decades, but they
have not been widely adopted in the industry yet [8, 9]. The limited adoption of
DSLs in the industry is partly due to the lack of mature tools [10, 11].

Nowadays, language engineers have different tools and metalanguages to choose
from when implementing a new language. The right selection of such tools is
essential for the language’s success. Likewise, this means that companies end
up with diverse ecosystems of languages and tools. These tools are continuously
changing to support diverse business requirements, depending on what they want to
achieve or the organization’s needs. Communication between tools and languages is
often required to share functionalities among different components. When there is
no communication between platforms, developers could reimplement these features.
However, reimplementing these functionalities is a cumbersome activity, and it does
not fix the problem in the long term because, at some point, it might be required to
reimplement those features again.

For instance, there are several textual languages at Canon Production Printing
that they have been developing and maintaining over the years. However, they have
more recent languages that were developed using a projectional LWB. They have
recently found that they require to interoperate languages, which means reusing
language concepts across LWBs. This interoperation allows them to address new
business needs and reduce the time to market. Therefore, they demand a bridge

200 M. V. Merino et al.

that supports the reuse and translation of existing languages across heterogeneous
LWBs.

3 Background

In this section, we present some of the basic concepts used in this chapter. The
concepts described below are mostly about Software Language Engineering (SLE).
Mainly, we focus on discussing the language’s syntax and its definition in both
textual and projectional LWBs.

3.1 Software Language Engineering

Software Languages A software language is a means of communication between
programmers or end users and machines to develop software. Languages are often
divided into three main components, namely, syntax, semantics, and pragmatics [2,
12]. A language’s syntax is a set of rules that define valid language constructs, such
as defining a group of rules that captures expressions or statements. The language’s
syntax can be expressed in a concrete and abstract way. The concrete syntax is
designed as the user interface for end users to read and write programs, whereas
the abstract syntax is the interface to the language implementation. The semantics
of a language is a mapping between syntactic elements and their meaning. Such
mapping can be defined in different manners, such as operational semantics or
model-to-model transformations [2]. Language pragmatics describes the purpose
of the language constructs, and it is defined informally often in natural language
through narrative and examples.

Language-Oriented Programming (LOP) LOP is an approach to software devel-
opment where the main activity in development consists of defining and applying
multiple DSLs [3, 13]. Programmers define custom languages to capture aspects
of a software system in a structured way. The idea is that each language captures
the essential knowledge or aspects of a domain problem so that the productivity
increases and domain knowledge is decoupled from implementation concerns. In
other words, a DSL captures the “what” of the domain, whereas compilers, code
generators, and interpreters define the “how.”

LanguageWorkbench To help language engineers develop software languages, they
rely on metaprogramming tools called LWBs. These tools simplify and decrease
the development cost of software languages and their tooling [3]. A LWB offers
two main features: a specialized set of metalanguages for defining the syntax
and semantics of DSLs and affordances to define various IDE services such as
syntax highlighting, error marking, and auto-completion. In this chapter, we are
going to focus on the former. There are two types of LWBs, namely, textual (also

Projecting Textual Languages 201

called syntax-directed) and projectional (also called structural) [1, 2, 14]. The main
difference between these types is how languages are described and how programs
are edited. A textual LWB employs plain text and parsing to map concrete syntax to
the internal structures of the LWB. For instance, Rascal uses context-free grammars
as formalism [15] for defining the language’s syntax. A projectional LWB allows
a program’s AST to be edited directly [16]. For instance, MPS uses an AST
Concept Hierarchy [14] to define the language’s structure, and MPS implements
a projectional editor for manipulating programs. A projectional editor is a user
interface (UI) for creating, editing, and manipulating ASTs.

3.2 Syntax of Textual and Projectional Languages

As mentioned before, a software language’s syntax is a set of rules that describe
valid programs [2]. Usually, it is divided into two, namely, concrete syntax and
abstract syntax. In this subsection, we describe how different LWBs represent both
types of syntaxes.

In textual LWBs, a language’s concrete syntax is usually specified using Context-
Free Grammars (CFGs), while in projectional LWBs, the concrete syntax is
expressed as AST projections. Below we explain both approaches and highlight
their main differences. To clarify the differences between textual and projectional
LWBs, we will use Rascal and MPS. Table 1 shows a comparison of the notations
used by these two platforms to define language’s syntax.

Context-Free Grammars A CFG is a formalism for describing languages using
recursive definitions of string categories. A CFG C is a quadruple:

C → (S,NT , T , P)

in which S is the start symbol (S ∈ NT), NT is a set of syntactic categories also
known as nonterminals, T is a set of terminal symbols, and P are production rules
that transform expressions of the form V → w. V is a nonterminal (V ∈ NT), and
w could be zero or more nonterminal or terminal symbols (w ∈ (T ∪ NT)).

For example, a CFG that describes the addition of natural numbers N is shown
below:

G = (Exp, {Exp,Number}, {+} ∪ N, P)

Table 1 Comparison between notations used for describing languages in textual and projectional
LWBs

Language Rascal MPS

Concrete syntax Context-free grammar Projectional editor definition

Abstract syntax Algebraic data rype AST concept hierarchy

202 M. V. Merino et al.

The production rules P are defined as follows:

start → Exp (1)

Exp → Number (2)

Exp → Exp + Exp (3)

Number → i(i ∈ N) (4)

By applying the previous production rules, we can write the arithmetic expression
a + b (where a, b ∈ N) as:

start → Exp

Exp → Exp + Exp

Exp + Exp → a + Exp

a + Exp → a + b

a + b

Once there are no more nonterminals (NT), we cannot rewrite the expression
a + b because there are no production rules that can be applied. We say that a
program is syntactically valid if there is a derivation tree from the start symbol to
the string that represents the program.

For instance, the concrete and the abstract syntax of the language described above
can be implemented in Rascal, as shown in Listings 1 and 3, respectively. The first
one defines two nonterminals, namely, Exp and Nat. The Exp rule contains two
productions, for literal numbers and addition. The Nat nonterminal defines natural
numbers. AST Listing 3 defines an Algebraic Data Type (ADT) that captures the
structure of the languagewith two constructors: nat(. . .) and add(. . .). The terminals
of the expression grammar (i.e., Nat) are represented using built-in primitive types
of Rascal (i.e., int).

Syntax in Projectional LWBs In a projectional LWB, the syntax is also divided
into its concrete and abstract representation. The concrete syntax corresponds to
an editor definition, whereas the abstract syntax is defined in a concept hierarchy.

Projectional editors do not share a standard formalism for defining abstract
syntax; therefore, each platform provides its own formalism. MPS uses a node

Listing 1 Concrete syntax of addition and numbers in Rascal

start syntax Exp = number: Nat nat | addition: Exp lhs "+" Exp rhs;

lexical Nat = digits: Natural;

Projecting Textual Languages 203

Listing 2 Lexical library

lexical BasicString = [a-z]*[a-z];
lexical Natural = [0-9]+;
lexical String = "\"" ![\"]* "\"";

Listing 3 Abstract syntax of addition and numbers in Rascal

data Exp = adddition(Exp lhs, Exp rhs) | number(int n);

Fig. 1 Concept definition of addition (left) and numbers (right)

concept hierarchy [14]. For instance, the AST representing a language for describing
the addition of natural numbers is shown in Fig. 1. TheMPS implementation uses an
Expression interface and two concepts, namely, Addition and Number. To represent
integer numbers, we use the built-in integer data type.

How the users will edit expressions of this kind is defined by an editor definition.
However, MPS also offers a generic reflective editor, so that every concept in MPS
comes with a default editor. A reflective editor is a projectional representation of an
AST that developers can use out of the box. An example of an arithmetic expression
program using the reflective editor is shown in Fig. 2.

4 Approach: Projecting Textual Languages

This section presents a mechanism for enabling textual languages usage in a
projectional editor by generating a projectional language from a grammar. In other
words, the current approach translates existing textual languages into equivalent
projectional languages, including both structure and editor aspects. Then the transla-
tion of existing textual programs into equivalent models of a generated projectional
language is discussed. We first show a general overview of the approach. Then,

204 M. V. Merino et al.

Fig. 2 Reflective editor for
the operation a + b, where
a = 1 and b = 6

we explain a generic mapping between CFGs and the structure of a projectional
language. Afterward, we describe the derivation of a projectional editor from a
grammar; we show how to derive the editor aspect for each generated concept in
the language structure. Finally, we explain the translation of textual programs to
projectional models that conform to a generated projectional language. Although
the current approach is implemented using Rascal and MPS, its principles can be
adopted in the context of other LWBs.

4.1 Mapping Grammars to Concept Hierarchies

This section contains the description of the mapping between a grammar and the
structure of a projectional editor. The current approach analyzes a CFG, namely,
production rules, nonterminal, terminal, and lexical symbols. To illustrate each of
the concepts of the mapping, we use the grammar for the Addition language shown
in Listing 1.

Nonterminal Symbols The counterpart of a nonterminal symbol in MPS is an
interface.

An interface is a programming concept that may define the public, shared
structure of a set of objects (typically described by classes). In MPS, interfaces
are represented as concepts, and their instances are called nodes. In the same way
that interfaces may have multiple implementations (the classes), a nonterminal is
“realized” by one or more productions. For instance, in Listing 1, there are two
nonterminals, namely, Exp and Number. Thus, these two nonterminals map to two
interfaces with the same name in the generated projectional language. The definition
of the Exp interface in MPS is shown in Listing 4.

Projecting Textual Languages 205

Listing 4 Definition of the Exp interface in MPS

interface concept Exp extends <none>

properties:
<< ... >>

children:
<< ... >>

references:
<< ... >>

Listing 5 Mapping a CFG start symbol into a MPS concept

concept prog extends <default> implements Program

instance can be root: true
alias: <no alias>
short description: Exp

children:
expression :Exp[1]

Furthermore, one additional nonterminal that we have not mentioned is the start
symbol. Structure concepts in MPS have a property named instance can be root.
This attribute indicates whether the concept can be used to create an AST root
node [14]. In our mapping, we take the start symbol of the grammar, and create
a concept in MPS. This concept will have the property instance can be root set to
true. For instance, in Listing 5, we show an example using the expression language,
assuming we have a start symbol Program with a single production, prog.

Productions A nonterminal rule has one or more productions. As we mentioned
before, a nonterminal in a CFG is mapped to an interface concept in MPS.
Therefore, to keep the relationship between a nonterminal and their productions,
we map each production as an MPS concept. Each concept must implement the
interface of the nonterminal. Moreover, the AST symbols in the production rule
are mapped to either the children or the properties field. When the symbol is a
nonterminal, it is defined in the children field, and when the symbol is terminal or a
lexical, it is mapped in the properties field. Note that symbols that are only relevant
to concrete syntax, such as keywords and operator symbols, are not mapped here,
since they are not part of the abstract syntax; they will be used to define the editor
aspects (see below).

For instance, addition (Listing 1) is a production rule of the nonterminal Exp.
This production rule is mapped into an MPS concept that implements the Exp

interface. The resulting concept in MPS is shown in Listing 6.

206 M. V. Merino et al.

Listing 6 Result of mapping a production rule to a concept in MPS

concept addition extends <default> implements Exp

instance can be root: false
alias: +
short description: Exp + Exp

children:
lhs :Exp[1]
rhs :Exp[1]

Listing 7 Lexical mapping

concept digits extends <default> implements <none>

instance can be root: false
alias: <no alias>
short description: <no short description>

properties:
nat: Natural

children:
<< ... >>

references:
<< ... >>

Lexicals Lexicals define the terminals of a language and are typically defined by
regular expressions. Rascal allows full context-free lexicals, but here, we assume
that all lexicals fall in the category of regular languages that can be defined by
regular expressions.

To ease the mapping between Rascal lexicals and MPS concepts, we define a
Rascal module that contains a set of default lexicals. These lexicals define the syntax
of identifiers, string literals, and integer numbers. Developers can use these lexicals
in their Rascal grammars, but it is also possible for users to include their lexicals. In
this case, developers must describe the mapping to MPS manually.

Each lexical is mapped to a concept, like any other nonterminal, and a con-
strained data type. To illustrate this, Listing 1 contains Nat’s definition, which
consists of a single production, called digits. This production rule references
Natural, which is one of the predefined lexicals (Listing 2). As a result, the lexical
Nat is translated into a concept, called digits (Listing 7), and a constrained data
type, called Natural (Listing 8). The digits concept has a single property of type
Natural, a constrained data type capable of capturing natural numbers using the
regular expressions engine of MPS.

Projecting Textual Languages 207

Listing 8 Result of mapping a Rascal lexical to an MPS constrained data type

constrained string datatype: Natural

matching regexp: [0-9]+

Listing 9 Concept mapping for a list of symbols

concept groupExp extends <default> implements Exp

instance can be root: true
alias: <no alias>
short description: Exp

properties:
<< ... >>

children:
exps :Exp[0..n]

references:
<< ... >>

List of Symbols In CFG, it is possible to define a group of symbols of the same
type, often expressed using Kleene’s star (*) and plus (+). Kleene’s operators (star
and plus) are unary operators for concatenating several symbols of the same type.
The first one denotes zero or more elements, and the second one denotes one or more
elements in the list. The current approach detects both operators (Kleene’s star and
plus) in productions. The operators are represented in MPS as children of a concept
with cardinality zero-to-many (0..*) and one-to-many (1..*), respectively. For
instance, let us add to the language shown in Listing 1 the following production:

start syntax Exp = ... | groupExp: Exp* exps;

This production defines zero or more expressions (Exp). The resulting mapping of
the production groupExp is shown in Listing 9.

4.2 Mapping Grammars to Editor Aspects

This section presents the mapping between a grammar and the editor aspect in
MPS. For creating the editor aspect of the language, we use the language’s layout
symbols, namely, literal and reference symbols. In this context, a reference symbol
is a pointer to a nonterminal symbol (which can be lexical or context-free). come
with the language.

208 M. V. Merino et al.

Listing 10 Generated editor for addition

<default> editor for concept addition
node cell layout:
[- % lhs /empty cell: % + % rhs /empty cell: % -]

inspected cell layout:
<choose cell model>

Literals Literal symbols may be part of productions to improve the readability of
code or disambiguate. They form an essential aspect of the concrete syntax and can
be leveraged to obtain projectional editors.

To create an editor, we first take each production rule; we look at each symbol and
keep track of its order. It is essential to keep track of the order because it affects how
the editor displays the elements. In this process, we consider two types of symbols,
namely, literals and references. If the symbol is a literal, it is added to the node cell
layout as a placeholder text. Moreover, this is used to define the syntax highlighting
of the resulting editor. The literals are displayed with a different color to show the
users that they are reserved words of the language. As a result, the current approach
offers a binary coloring scheme: keywords are blue and the remaining symbols in
black. Instead, if it is a nonterminal symbol, we create a reference.

For example, the production rule that defines the addition between natural
numbers has three symbols: lhs, +, and rhs. Following the approach, we first take
the lhs symbol and create a reference to its type Exp; then, we take the literal, +,
and copy it to the editor, and finally, we create a reference to the rhs symbol, which
is also of type Exp. Listing 10 shows the generated editor for addition. This editor
has two references, namely, lhs and rhs. Editors use references to access concept
properties. For instance, in the editor, the reference lhs creates a link to the lhs

children in the addition concept. Moreover, the editor, for addition, has a literal (+)
in between the two references. The literal is shown as a placeholder text for users to
write expressions like 5 + 6.

List of Symbols The editor aspect for a list of symbols (zero-to-many and one-
to-many) is based on creating a collection of cells. More concretely, each list of
symbols is translated into an indent cell collection. Listing 11 shows the generated
editor aspect for the groupExp production.

4.3 Editor Improvement: AST Pruning

Having defined a mapping from CFGs to the editor aspect in projectional languages,
we will improve the generated projectional editor. The editor can be improved by
pruning the grammar to enhance IDE services (e.g., auto-completion). To prune the

Projecting Textual Languages 209

Listing 11 Editor mapping for a list of symbols

<default> editor for concept groupExp
node cell layout:
[-
(- % exps % /empty cell: -)

-]

inspected cell layout:
<choose cell model>

grammar,we eliminate chain rules (also known as unary rules) from the productions.
To eliminate the chain rules, we first collect all the productions with a single parent
and are referenced once in the grammar. Then, we merge the single reference with
its parent.

To illustrate this process, let’s consider the following production:

A → A|b|c|d

Long production rules are often split into smaller production rules for readability.
For example, a language engineer can also write the previous production as:

A → A|B
B → b|c|d

The second alternative impacts the language’s structure because it introduces a
new nonterminal B. This new nonterminal is translated in the AST as an extra node.
To illustrate the difference between both versions, Fig. 3 shows a tree view of the
ASTs. From the right-most AST in Fig. 3, we observe that node B is referenced once
in the language. Thus, productionA → B represents a chain rule. This chain rule is
translated to the end users as an extra keystroke to access the leaf nodes b, c, d via
B. If we remove the chain rule, we avoid creating an extra node (B) before accessing
the terminals (b, c, d) in the projectional editor.

For example, if users want to create a node b, they can call auto-complete, and
they will obtain two options, A or B. Based on the AST shown in Fig. 3, they select
to create a node B. However, they have not reached b yet. Thus, they must press tab
completion again, and then they get all the options of B: b, c, and d. In contrast, if
we prune the chain rule, meaning we remove concept B, we can omit the second
tab completion because all the options will be visible from the first tab completion.
Removing chain rules from a grammar impacts both the structure and the editor of a
projectional language since removing a concept means the editor of such concept is
no longer needed. As a result, we enhance the user’s interactionwith the projectional
editor by removing the chain rules.

210 M. V. Merino et al.

Fig. 3 Tree-based view
comparison

A

A b c d

A

A B

b c d

4.4 Translating Textual Programs into Projectional Models

We extend the approach to translating existing textual programs into projectional
models. This extension’s motivation is that we want to offer a mechanism for
importing existing textual programs into the generated projectional language. We
did not consider a manual translation because it is cumbersome, and tools can
automate it.

To this aim, we applied the same approach proposed for generating languages.
However, instead of only using a grammar as input, it takes both the program and
the grammar. We use the grammar for creating a parser; then, the parser creates a
parse tree of the program. Both Rascal and MPS offer support to write and read
XML files, so we define an XML schema to serialize and deserialize parse trees
as XML files. The former acts as an intermediate representation that supports the
communication between platforms. The current approach is implemented in Rascal
and MPS. However, it is possible to support other platforms by implementing the
XML schema (Listing 12). In the textual world, the schema serializes the parse tree,
while in the projectional world, the projectional LWB deserializes the XML and
uses it to create the projectional model.

The current approach uses the XML file as the input of an MPS plug-in. The
plug-in traverses the XML tree and creates a model that conformswith the generated
language. If the translation is correct, the generated model should be a valid instance
of the generated projectional language.

4.5 Architecture

The approach to bridge textual and projectional LWBs contains five components:
Rascal2XML, XML2MPS, XMLImporter, ImportLanguage, and ImportProgram.
The solution has been implemented using Rascal MPL and Jetbrains MPS. We
consider two different architectures for the implementation of the current approach.
The first one was based on integrating Rascal directly into MPS, including Rascal
as a Java library in MPS. This architecture allows us to call Rascal parsers directly
from MPS. However, this approach does not allow reusability, and this integration
should be repeated for any textual LWB. Instead, the second architecture uses
an intermediate format to communicate between a textual LWB and MPS. In the

Projecting Textual Languages 211

Listing 12 Simplified XML schema for exchanging information between LWBs

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="root">
<xs:element name="nonterminal">
<xs:element type="xs:string" name="name"/>
<xs:element name="production" maxOccurs="unbounded" minOccurs="0">
<xs:element type="xs:string" name="name"/>
<xs:element name="arg" maxOccurs="unbounded" minOccurs="0">
<xs:element type="xs:string" name="name"/>
<xs:element type="xs:string" name="type"/>
<xs:element type="xs:string" name="cardinality"/>

</xs:element>
<xs:element name="layout">
<xs:choice maxOccurs="unbounded" minOccurs="0">
<xs:element name="ref">
<xs:element type="xs:string" name="name"/>
<xs:element type="xs:string" name="type"/>

</xs:element>
<xs:element name="lit">
<xs:complexType mixed="true">
<xs:element type="xs:string" name="name" minOccurs="0"/>
<xs:element type="xs:string" name="type" minOccurs="0"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:element>

</xs:element>
</xs:element>
<xs:element name="keywords">
<xs:element type="xs:byte" name="keyword"/>

</xs:element>
<xs:element name="lexical">
<xs:element type="xs:string" name="name"/>
<xs:element name="arg">
<xs:element type="xs:string" name="name"/>
<xs:element type="xs:string" name="type"/>

</xs:element>
</xs:element>
<xs:element type="xs:string" name="startSymbol"/>

</xs:element>
</xs:schema>

following paragraphs, we describe each of the components of this architecture and
how they interact with each other. All the code is available on a GitHub repository.1

Rascal2XML This module is written in Rascal, and it is responsible for generating
an XML representation of Rascal grammars and existing textual programs. This
module produces an XML file that is used as input for the module XML2MPS.

XML2MPS This MPS project holds the logic for generating MPS language
definitions and model instances. It is responsible for creating MPS concepts and
interfaces from an XML file. Both ImportLanguage and ImportProgram use this
library.

1https://github.com/cwi-swat/rascal-mps.

https://github.com/cwi-swat/rascal-mps

212 M. V. Merino et al.

ImportLanguage This is an MPS plug-in that enables the import of languages. It
creates the user interface (GUI) for importing a textual language. The GUI displays
a pop-up that takes the grammar (in XML format) as input, calls the XMLImporter,
and produces a projectional language.

ImportProgram This is an MPS plug-in that enables the import of programs.
This plug-in takes as input an XML file that contains a program, and it produces
a projectional model. To create the projectional model, this plug-in relies on the
XML importer to read the XMLFile and in XML2MPS to create the MPS nodes.

XMLImporter This is a Java library for traversing the tree-like content of the
XML files. This is used to map textual languages to projectional languages and
translate textual programs as projectional models.

5 Case Study

In this section, we present a case study to evaluate our approach. The language
we have chosen for this purpose is JavaScript (ECMAScript 5) because there is
an existing implementation of it for MPS, and it allows a proper validation of
Rascal2MPS. First, we explain the definition of the language. Then, we show how
we create a mapping between the textual language and the generated projectional
language. Afterward, we generate a projectional editor based on the language’s
concrete syntax. Finally, we import existing textual programs as valid MPS models
that conform to the generated projectional language. This section concludes with a
brief discussion based on results.

5.1 Language Description

So far, we have presented a way of applying the approach to a toy language of
expressions. Now we will apply it to a well-known and widely used language. To
show the applicability of the approach to a real-world language, we reused the
existing grammar definition for JavaScript, included in Rascal’s standard library.
This grammar can be found in GitHub.2 This evaluation aims to use a Rascal
implementation of the JavaScript grammar and obtain the equivalent language in
MPS.

First, we must sanitize the existing grammar to meet our solution’s constraints,
as described in (Sect. 6). It is essential to mention that this sanitization process is
entirely manual. In this grammar, the sanitization process consists of adding labels

2https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/javascript/
saner/Syntax.rsc.

https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/javascript/saner/Syntax.rsc
https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/javascript/saner/Syntax.rsc

Projecting Textual Languages 213

to all the production rules and variable names to all symbols and changing lexicals
to use either one of our predefined lexical types or a user-defined construct. The
resulting sanitized grammar can be found on GitHub.3

We then used this grammar as input to generate the XML that encodes the
grammar definition into the intermediate format. This XML representation is also
available on GitHub.4 The XML file can then be imported into MPS. In MPS, we
use the plug-in that we built, and we use the XML file as an input to successfully
generate the projectional version of JavaScript.

To evaluate our generated version of JavaScript, we decided to compare it against
an ad hoc MPS implementation of such a language called EcmaScript4MPS.5

EcmaScript4MPS is a fine-tuned implementation of JavaScript for MPS. In other
words, the implementation considers how developers use JavaScript editors and the
features offered for JavaScript in IDEs. To compare both implementations, we show
several examples of language elements and programs of both implementations. For
the rest of this section, we will refer to the generated version as JsFromRascal and
the MPS ad hoc implementation as JsManual.

5.2 Editor Aspect

To compare the editor of both languages, we present how a program looks like in
both editors. The JsFromRascal program was created using the approach described
in Sect. 4.4. This approach takes a textual program as input, and the tool parses it
and produces an XML file with the resulting parse tree. It is important to mention
that we did not tweak the resulting program; we used the generated version as is.
Figure 4 shows the resulting program using the JsFromRascal editor.

In contrast, the program for JsManual was written by hand because we did not
have a mechanism, like the one described before, for arbitrary textual programs.
However, the handwritten program is the same as the one used for JsFromRascal.
The resulting program in the JsManual editor is shown in Fig. 5.

As can be seen from Figs. 4 and 5, the program in the JsFromRascal editor takes
up more lines of code than its counterpart in JsManual. According to the JavaScript
standards, the JsManual editor makes the program look more readable due to the
ad hoc implementation of the editor, which places break lines and whitespaces
in the right place. The JsFromRascal editor splits up statements and expressions
into several lines based on the implemented heuristics. Instead, the JsManual editor
does not break these language constructs into several lines. However, it forces users

3https://github.com/cwi-swat/rascal-mps/blob/master/Rascal2XML/src/Grammars/JS/
JSGrammar2.rsc.
4https://github.com/cwi-swat/rascal-mps/blob/master/Examples/JS_Grammar.xml.
5https://github.com/mar9000/ecmascript4mps.

https://github.com/cwi-swat/rascal-mps/blob/master/Rascal2XML/src/Grammars/JS/JSGrammar2.rsc
https://github.com/cwi-swat/rascal-mps/blob/master/Rascal2XML/src/Grammars/JS/JSGrammar2.rsc
https://github.com/cwi-swat/rascal-mps/blob/master/Examples/JS_Grammar.xml
https://github.com/mar9000/ecmascript4mps

214 M. V. Merino et al.

Fig. 4 The substring JavaScript program displayed using the JsFromRascal editor

to define variables outside for statements due to the language’s name resolution
implementation.

Another difference between the editors is the usage of the dot operator (.).
This operator is often used in programming languages to access fields or methods.
For instance, JsFromRascal identifies it as a binary operator (e.g., “+,” “−”), and
therefore the editor introduces whitespaces before and after the dot operator. This
is an example of the limitations introduced by the heuristics; they are rigid. A

Projecting Textual Languages 215

Fig. 5 The substring JavaScript program displayed using the JsManual editor

customization mechanism might be needed to make such heuristics more flexible;
thus, they can be adapted to different languages and scenarios.

In sum, the JsManual editor is more appealing, and visually, it looks more like
a textual program written using a plain text editor than the one generated using
JsFromRascal. This kind of difference was expected because the JsManual editor is
implemented in an ad hoc way to offer the best experience for this language, while
the JsFromRascal editor is obtained through a generic tool that works for various
languages. However, the JsFromRascal editor can be manually fine-tuned to achieve
the desired editing experience. The knowledge of the JsFromRascal editor depends

216 M. V. Merino et al.

entirely on two core elements, the information contained in the grammar and the
set of heuristics applied to such grammar. On the one hand, the creation of ad hoc
editors from scratch, such as the one made for JsManual, is a cumbersome activity.
On the other hand, a generated editor speeds up editors’ development process
because they use generic abstractions that can be applied to several languages, so
that developers can focus on fine-tuning the generated editors on edge cases based
on platform-specific features and the language’s coding styles.

5.3 Program’s Usability

Now we are going to discuss the usability aspects of both editors. Here we only
focus on the ease of creating and editing programswith the editors mentioned above.
First, we investigate the tab-completion menu, which is one of the critical aspects
of a projectional editor since it allows users to navigate through the language’s
structure (AST). In Fig. 6, we present a code completion menu for a for statement in
JsFromRascal, and in Fig. 7, we present the equivalent using JsManual. Both editors
show similar information: the concept’s name and a brief description. However,
the JsFromRascal editor also displays the structure of the child nodes of such a
concept, which might help developers understand how to use concepts or remember
the concept’s syntax.

5.4 Discussion

Projecting Grammars as Language Structures The first goal and building block
for this project is to recreate the structure of a language in two different LWBs.
This goal was previously achieved and explained by Ingrid [17]. We wanted to try a
different solution in which we do not directly integrate both platforms, but instead,
we define an intermediate format to make the solution more general. Section 4.1
describes the process for mapping a textual language definition into a projectional
language definition. As shown in Sect. 5.1, the current approach works, yet some
considerations must be taken into account to generate a proper language. We
understand that the way we treat lexicals might be cumbersome since the complex
structure’s mapping must be manually defined. We also think this could be solved
by defining some pre-processing strategies to capture lexicals and generate them
into the second platform.

Editor Aspect: Language Usability The editor aspect of a language is essential
because it is the user interface to the language. Nevertheless, implementing a good
editor is cumbersome. As shown in Sect. 5.2, usability is one of the main differences
between ad hoc and generated implementations. In the generated version, we
applied heuristics from the literature (e.g., well-known formatting and pretty-

Projecting Textual Languages 217

Fig. 6 JsFromRascal editor tab-completion menu of a for loop

Fig. 7 JsManual editor tab-completion menu of a for loop

218 M. V. Merino et al.

printing approaches) to try to identify production rule patterns generically. However,
these heuristics have limited power, and of course, they might not fit every language,
especially if we compare them against custom implementations. Nonetheless, with
the current approach, we show that it is possible to apply existing heuristics to create
projectional editors based solely on the language’s grammar. Besides, the current
approach considers the language’s structure to generate a projectional editor that, in
some cases, might be more appealing than the reflective MPS editor.

To improve the current approach, we could have implemented more heuristics
or define a mechanism for customizing them. We might also require additional
information other than the information contained in the grammar. Also, languages’
coding style and user feedback are fundamental to improve the quality of generated
editors. In other words, we need more information to implement the heuristics in a
less rigid fashion and therefore improve the editor generation.

6 Limitations

This section discusses the limitations of the approach, the rationale behind them, and
possible solutions to overcome them. These limitations are based on assumptions
and constraints in the grammar. Besides, there is also a technical limitation related
to how the mapping is implemented.

Summary: Grammar Preconditions

• Nonterminal symbol name and production rule labels within a grammar
must be unique.

• Symbol labels within a production rule must be unique.
• Lexicals can be either one of the MPS predefined data types or the lexical

must be defined by hand using the lexical library.
• Each production rule and each symbol within a production rule must be

labeled.

1. The names of the nonterminal symbols in a grammar must be unique. In other
words, the current approach does not support the definition of two concepts with
the same name. The rationale behind this is that the name of a nonterminal
symbol is used to define an interface concept in the generatedMPS language, and
the production labels are used to create concepts. One way to avoid this constraint
could be defining a renaming scheme that can detect and fix name conflicts.
However, this solution might introduce a side effect on the language’s usability;
projectional editors use these names for IDE services such as tab completion, so
they must be descriptive enough for end users. Also, other language components

Projecting Textual Languages 219

must be refactored according to the renaming mechanism. Therefore, we did not
implement an automatic renaming scheme, and we preferred to include it as a
limitation of the current approach.

2. In the mapping between a Rascal grammar and an MPS language, symbol labels
are used as variable names, either for children or references in MPS
concepts. These names should be unique within the same concept, yet not for the
whole language. For instance, if we define concepts A and B, both can contain a
reference of a child named name; however, A cannot have more than one child
or reference called name. In other words, symbol labels can be reused across
concepts but not within the same concept.

3. Lexicals are a challenging concept to deal with because there is no standard
way of defining them. However, it is possible to make some assumptions on
regularity and define a set of constraints to translate lexical between platforms in
an automatic way, but this requires considerable effort. As a result, we did not
want to restrict regular expressions, so we included lexicals that represent MPS
built-in types (e.g., string, int) to the lexical library. The current approach does
not limit users from defining custom lexicals. However, users must manually
define a mapping between the custom lexical defined in Rascal and the right
translation for MPS. Section 4.1 describes the details on how to support custom-
defined lexicals.

4. It is required to label all the production rules and symbols within a production
rule because the approach uses the labels for naming concepts or children
reference fields. A solution could be to generate placeholder names, yet this
introduces other issues such as nondescriptive names and name matching issues
when importing existing textual programs.

5. The current approach does not take advantage of name resolution, especially
for code completion, which is a keystone for projectional LWBs. For instance,
in MPS, concept hierarchies do not rely on trees’ definition; instead, they use
graphs.

6. The current implementation supports the mapping of lists and separated lists of
symbols into MPS language concepts (editor and structure aspects). However,
the mapping for separated lists is partially implemented. The current approach
treats separated lists just as a list. As a result, the separator symbol is ignored for
the generation of the editor.

The current approach does not support language nor program evolution. In other
words, the current approach considers languages as stand-alone units. It does not
consider that changes might happen to the language. For example, if a developer
uses a textual language A and generates a projectional language A* inside MPS, the
current approach only accepts valid programs according to A. If there are changes to
the original language A, those changes cannot be patched in the generated versions.
This forces to regenerate the whole language from scratch or make changes by hand.
Some changes do not break the importing of programs:

220 M. V. Merino et al.

• Addition of language constructs to the grammar and then using them in a
program. This means that the plug-in for importing programs, ImportProgram
(Sect. 4.5), will not find such elements. As a result, the plug-in notifies the user.

• Modification of existing language constructs (e.g., adding or removing parame-
ters). As expected, this type of change often ends up in a failure.

In sum, language engineers and users, in general, should be aware of the
language’s version and the version used to define programs. We see this problem as
an opportunity for future extensions of the current approach to supporting languages
and programs’ evolution.

7 Related Work

Projectional LWBs allow users to manipulate the programs’ AST directly; therefore,
parsing technology is no longer needed. In contrast, textual LWB parsing is essen-
tial. This section presents the state of the art in grammar to model transformation
and editor generation.

7.1 Grammar to Model

The generation of models from grammars is essential for the current approach. Thus,
we identified the following related work in this direction.

Ingrid [17] is a project that attempts to bridge the gap between textual and
projectional LWBs. Their approach uses ANTLRv4 [18] as textual LWB and
JetBrains MPS as projectional editor. Ingrid is implemented as a hybrid solution
in Java/MPS project. Ingrid bridges textual and projectional LWBs in three steps:
firstly, the grammar must be parsed, and relevant information about the structure
and other required language elements is stored as linked Java objects. Secondly,
the stored structure is traversed, and equivalent MPS model nodes and interfaces
are constructed. Finally, an editor is generated for each MPS Language Concept
Node. There are some high-level similarities between Ingrid and Rascal2MPS.
Both projects perform the steps taken for parsing, gathering information about the
language, generating an intermediate structure to represent the language, and finally
generating a model from the said intermediate structure. The main differences are
in the architecture, design, and implementation choices of both projects, which
have various consequences for using the respective tools. The main architectural
difference is in the choice of the intermediate structure. Whereas we chose an
external file-based format (see Sect. 4.5), Ingrid uses an internal representation
of linked Java objects. This decision enables them to use the ANTLRv4 parser
implemented in Java and the ability of MPS to call into Java executables directly.
Thus, the Ingrid MPS plug-in can call the parser and start the data extraction

Projecting Textual Languages 221

process internally. In contrast, Rascal2MPS keeps both LWBs separate; they can
communicate only through an external intermediate format. Some of the advantages
of not using an intermediate format are:

• The solution becomes a one-step process, making it more efficient for the
language engineer.

• All implementation is done on one side of the bridge (projectional LWB),
simplifying the development.

• The language engineer does not need to maintain both the textual and projectional
LWB.

However, this approach has a significant downside: the projectional LWB must
call the grammar parser directly. Thus, there is a strong coupling between the
projectional LWB and the specific grammar parser. In the case of Ingrid, the MPS
plug-in calls into the Java ANTLR parser. However, the ANTLR parser is not the
only one. If we wished to extend Ingrid to support Rascal, we would need to replace
ANTLR parser calls with Rascal parser calls. This can lead to several problems:
(i) The architecture must allow this replacement. This can be partially solved using
interfaces and abstractions over the parser, but the problem of potentially different
APIs remains. A complete mapping from ANTLR parser function calls to Rascal
parser function calls would have to be made in the worst case. (ii) The parser needs
to be implemented in Java. ANTLRv4 already has a Java-based parser and is a prime
candidate for integration with the Java-based MPS. However, this is not necessarily
true for any given textual LWB. If one is not available, the language engineer would
either have to implement the parser in Java or find some way to expose the parsing
features to a Java environment.

Rascal2MPS addresses the problem of bridging the gap between the textual
and projectional worlds in a generic fashion. In other words, neither side of the
solution is aware of the other; they communicate only through the intermediate file-
based format. This format serves as a contract between the different parts of the
solution. If the intermediary file is generated from an ANTLR-, Rascal- or Xtext-
based grammar is irrelevant to the implementation on the side of the projectional
LWB.

Another difference between Ingrid and Rascal2MPS lies in the editor generation.
While Ingrid does identify the problem of usability of the reflective editor and
discusses several solutions, such as heuristics or prompts during the import process,
they have not been implemented. Ingrid only generates an editor containing the
node’s structural elements, i.e., the literals and references to other nodes. It is
then left up to the language engineer to apply whitespace to the editor manually.
Rascal2MPS goes further and applies heuristics to apply whitespace during the
import process automatically. While this does not eliminate the need to edit the
editor definitions manually (Sect. 5), it can save time given the right set of heuristics.
Finally, Ingrid does not address the problem of language artifacts, i.e., programs
created within the textual world. Thus, even after a language has been imported,
programs are written using the said language in the textual LWB that needs to be

222 M. V. Merino et al.

manually recreated as MPS models of the imported language. Rascal2MPS does
implement the ability to construct MPS program models using textual source code.

Wimmer et al. [19] describe a generic semiautomatic approach for bridging the
technological space between the extended Backus-Naur form (EBNF), a popular
grammar formalism, and Meta-Object Facility (MOF), a standard for model-
driven engineering. In this approach, an attribute grammar describes the EBNF
structure and the mapping between EBNF and MOF. Then, it is used to generate
a Grammar Parser (GP). This GP can then be used to generate MOF meta-models
from grammars. However, this approach fixates on MOF as the target meta-model
directly. In the case of going between LWBs in separate worlds, we do not want
to be specific in the target. Instead, Rascal2MPS uses an intermediate format and
makes the source and target formalism up to the implementation. Another downside
of the given approach is that it requires grammar annotations and additional manual
improvements of the generatedmodel to refine the generatedmodel.We seek to limit
the actions of the language engineer, especially concerning the source grammar.
The Gra2Mol [20] is another project which seeks to bridge the gap between the
textual grammar and model worlds. The authors define a domain-specific model
transformation language that can be applied to a program that conforms to a
grammar and generates a model that conforms to a target meta-model. This language
can be used to write a transformation definition consisting of transformation rules.
In this way, the presented approach abstracts over the generated meta-model, which
would be quite useful in our use case, as we would be able to give the meta-model of
the target LWB as input with the transformation definition. In practice, however, this
runs into problems when the desired target model is specific rather than generic. For
example, the standard storage format for JetBrains MPS is a custom XML format.
The models contain much information tied specifically to MPS, such as node IDs
and layout structures. Generating these from outside of MPS would be quite tedious
and would introduce a dependency on the MPS model format, which may change.
Thus, it is best to interact with the MPS model from within MPS itself, where MPS
can do the heavy lifting of generating the models.

7.2 Editor Generation

Editor generation is an essential step in bridging the gap between textual and
projectional LWBs. It is closely related to the well-known pretty printing problem
in the grammar world. Grammar cells [21] is an extension of MPS that offers
a declarative specification for defining textual notations and interactions in a
projectional editor. Implementing editors with this extension makes it easier to offer
a text-like editing experience; thus, it is widely adopted by the MPS community.
Our current implementation does not use grammar cells because we restricted our
approach on a plain MPS installation. However, this extension’s adoption is part of
the roadmap for the next iteration of the current implementation.

Projecting Textual Languages 223

Van de Vanter et al. [22] identify part of the core problem between the textual and
model-based approach. From a system’s perspective, a model-based editor allows
for easier tool integration and additional functionality. However, language users
are often more familiar and comfortable with text-based editing. In this paper, the
authors propose a compromise based on lexical tokens and fuzzy parsing. This is
not unlike what is offered by MPS. MPS editors are highly customizable and can be
made to resemble the text-based editing experience closely.

As introduced by van den Brand et al. [23], the BOX language for formatting
text is closely related, as the heuristics for generation white space between language
elements is reused in this project. The BOX language is further used in other work
on pretty-printing generic programming languages, such as GPP (Generic Pretty
Printer) [24], which constructs tree structures of a language element’s layout that
can be used by an arbitrary consumer.

Syntax-directed pretty printing [25] also identifies several structures for creating
language-independent pretty printers. In this approach, a grammar extended with
special pretty-printer commands is used as input to generate a pretty printer for
such a language. The generated pretty printer can then be reused for any program
written in the language the pretty printer was generated for. The annotated grammar
approach does limit the form the final pretty printer can have due to the lack
of options. Also, annotating an entire grammar can be tedious work. We attempt
to limit the required user interaction with the source grammar in our approach,
although we did not eliminate it.

Following this research line, Terrence et al. [26] propose Codebuff, which is a
tool for the automatic derivation of code formatters. Codebuff is a generic formatter
that uses machine learning algorithms to extract formatting rules from a corpus.
This is a neat approach because, as we mentioned before, source code formatting is
subjective, it depends on each programmer’s style, and it changes across languages.
For example, in Sect. 5.2, we showed that applying the same heuristics for any
language does not always produce a good editor. Therefore, we consider tools like
Codebuff as inspiration for future work. We could benefit from their techniques and
knowledge to generate editors in a flexible and highly configurable way and perhaps
learn from existing source code examples.

8 Conclusions and Future Work

In this chapter, we presented an approach to bridge the gap between textual
and projectional LWB. We defined a mapping between textual grammars and
projectional meta models; this mapping (Sect. 4) produces the structure and
editor aspects of a projectional language. Moreover, our approach allows users
to reuse textual programs by means of translating them to equivalent MPS mod-
els (Sect. 4.4). To validate our solution, we used as a case study a Rascal
grammar of JavaScript (Sect. 5). Based on the grammar definition, we gener-
ated a projectional version of JavaScript. To verify the correct mapping of the

224 M. V. Merino et al.

generated language, we successfully imported existing valid textual JavaScript
programs into MPS. In Sect. 6, we discussed some of the limitations of the current
approach.

Language evolution is a crucial aspect to look at in the future. Since the current
approach assumes that the generation is done only once, we ignore the fact that
the textual language and the projectional generated version might change. Then we
consider that keeping track of these changes and transferring/applying these changes
to the other is essential. If there are changes in the grammar after the projectional
language generation, developers must regenerate the whole language, which may
lead to losing information (if changes were made on the generated language).

Similarly, this applies to programs written in such languages. We consider that
a mechanism for maintaining both versions is worth investigating as future work to
keep a bidirectional mapping. Language engineers can switch from one platform to
another without losing information. Our approach offers support for a unidirectional
mapping from textual to projectional.We believe that a bidirectional communication
is required. Because depending on the language, one may benefit more from having
a textual or a projectional version of the language. Therefore, to support both
sides’ changes, we require a bridge to create a textual language from a projectional
language. Moreover, to complete the circle, a way of keeping track and propagating
changes in both worlds will be required. To avoid losing or reimplementing existing
features.

As we described in Sect. 5.4, the usability of generated editors is one of the
critical aspects that should be addressed in future research. We found that we can
generate editors with limited capabilities (that do not consider domain knowledge
or existing formatters). Therefore, we consider as future work exploring artificial
intelligence techniques (e.g., machine learning or programming by example) to
improve the existing editor (in the style of [26]), maybe by identifying patterns
in existing programs or commonalities in the grammar’s structure to guide or to
customize the generation of the editor aspect.

References

1. Erdweg, S., van der Storm, T., Volter, M., Tratt, L., Bosman, R., Cook, W.R., Gerritsen,
A., Hulshout, A., Kelly, S., Loh, A., Konat, G., Molina, P.J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V., Visser, E., van der Vlist, K., Wachsmuth,
G., van der Woning, J.: Evaluating and comparing language workbenches: Existing results and
benchmarks for the future. Comput. Lang. Syst. Struct. 44, 24–47 (2015)

2. Lämmel, R.: The Notion of a Software Language, pp. 1–49. Springer International Publishing,
Cham (2018)

3. Fowler, M.: Language workbenches: The killer-app for domain specific languages? (2015)
4. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.

ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)
5. Mengerink, J.G.M., van der Sanden, B., Cappers, B.C.M., Serebrenik, A., Schiffelers, R.R.H.,

van den Brand, M.G.J.: Exploring DSL evolutionary patterns in practice - a study of dsl
evolution in a large-scale industrial DSL repository. In: Proceedings of the 6th International

Projecting Textual Languages 225

Conference on Model-Driven Engineering and Software Development - Volume 1: MODEL-
SWARD, pp. 446–453. INSTICC, SciTePress (2018)

6. Bartels, J.: Bridging the worlds of textual and projectional language workbenches. Master’s
thesis, Eindhoven University of Technology, 1 2020

7. Mooij, A.J., Hooman, J., Albers, R.: Gaining industrial confidence for the introduction of
domain-specific languages. In: 2013 IEEE 37th Annual Computer Software and Applications
Conference Workshops, pp. 662–667 (2013)

8. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated bibliography.
SIGPLAN Not. 35(6), 26–36 (2000)

9. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
10. Nagy, I., Cleophas, L., van den Brand, M., Engelen, L., Raulea, L., Xavier Lobo Mithun, E.:

Vpdsl: A DSL for software in the loop simulations covering material flow. In: Proceedings of
the 2012 IEEE 17th International Conference on Engineering of Complex Computer Systems,
ICECCS ’12, pp. 318–327. IEEE Computer Society, USA (2012)

11. Verriet, J., Liang, H.L., Hamberg, R., van Wijngaarden, B.: Model-driven development of
logistic systems using domain-specific tooling. In: Aiguier, M., Caseau, Y., Krob, D., Rauzy,
A. (eds.), Complex Systems Design &Management, pp. 165–176. Springer, Berlin, Heidelberg
(2013)

12. Gabbrielli, M., Martini, S.: How to Describe a Programming Language, pp. 27–55. Springer
London, London (2010)

13. Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm. Technical
report, Jetbrains, 2004

14. Campagne, F., Campagne, F.: The MPS Language Workbench, Vol. 1, 1st edn. CreateSpace
Independent Publishing Platform, North Charleston, SC, USA (2014)

15. CWI-SWAT.: Syntax definition (2020)
16. Donzeau-Gouge, V., Huet, G., Lang, B., Kahn, G.: Programming environments based on

structured editors: the mentor experience. Interact Program Environ (1984)
17. Vysokỳ, P., Parízek, P., Pech, V.: Ingrid: Creating languages in MPS from ANTLR grammars

(2018)
18. ANTLR.: https://www.antlr.org/
19. Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In: International

Conference on Model Driven Engineering Languages and Systems, pp. 159–168. Springer
(2005)

20. Luis Cánovas Izquierdo, J., Cuadrado, J.S., Molina, J.G.: Gra2mol: A domain specific
transformation language for bridging grammarware to modelware in software modernization.
In: Workshop on Model-Driven Software Evolution, pp. 1–8 (2008)

21. Voelter, M., Szabó, T., Lisson, S., Kolb, B., Erdweg, S., Berger, T.: Efficient development
of consistent projectional editors using grammar cells. In: Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2016, pp. 28–
40. Association for Computing Machinery, New York, NY, USA (2016)

22. Van de Vanter, M.L., Boshernitsan, M., Avenue, S.A.: Displaying and editing source code in
software engineering environments (2000)

23. van den Brand, M., Visser, E.: Generation of formatters for context-free languages. ACM
Trans. Software Eng. Methodol. (TOSEM) 5(1), 1–41 (1996)

24. De Jonge, M.: Pretty-printing for software reengineering. In: International Conference on
Software Maintenance, 2002. Proceedings, pp. 550–559. IEEE (2002)

25. Rubin, L.F.: Syntax-directed pretty printing—a first step towards a syntax-directed editor.
IEEE Trans. Software Eng. (2), 119–127 (1983)

26. Parr, T., Vinju, J.: Towards a universal code formatter through machine learning. In:
Proceedings of the 2016 ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2016, pp. 137–151. Association for Computing Machinery, New York, NY,
USA (2016)

https://www.antlr.org/

	Projecting Textual Languages
	1 Introduction
	2 Motivation
	3 Background
	3.1 Software Language Engineering
	3.2 Syntax of Textual and Projectional Languages

	4 Approach: Projecting Textual Languages
	4.1 Mapping Grammars to Concept Hierarchies
	4.2 Mapping Grammars to Editor Aspects
	4.3 Editor Improvement: AST Pruning
	4.4 Translating Textual Programs into Projectional Models
	4.5 Architecture

	5 Case Study
	5.1 Language Description
	5.2 Editor Aspect
	5.3 Program's Usability
	5.4 Discussion

	6 Limitations
	7 Related Work
	7.1 Grammar to Model
	7.2 Editor Generation

	8 Conclusions and Future Work
	References

